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Abstract. Costly delay in negotiations can induce the negotiating parties to be more

forthcoming with their information and improve the quality of the collective decision.

Negotiation deadlines may induce stalling, in which players at some point stop making

concessions but switch back to concede at the end, or a deadlock, in which concessions end

permanently. Extending the deadline hurts the players in the first case but is beneficial

in the second. When the initial conflict between the negotiating parties is intermediate,

the optimal deadline is positive and finite, and is characterized by the shortest time that

would allow efficient information aggregation in equilibrium.

Acknowledgments. We thank Christian Hellwig for first suggesting a continuous time

framework, and Jacques Cremer, Hari Govindan, Ken Hendricks, David Levine, Mike Pe-

ters and Colin Stewart for comments. This research project has received financial support

from the Social Sciences and Humanities Research Council of Canada (Grant No. 410-2008-

1032) and from the Research Grants Council of Hong Kong (Project No. HKU7515/08H).



1. Introduction

When disagreements are resolved through negotiations, the time horizon of the negotiation

process may influence the final outcome. In the classical finite-horizon, alternating-offer

bargaining game of Stahl (1972), deadlines affect the way players make and accept bar-

gaining demands through the logic of backward induction, even though the deadlines are

never reached in equilibrium. In war of attrition games (e.g., Hendricks, Weiss and Wil-

son 1988), conflicts are gradually resolved with the passage of time. The presence of a

deadline not only affects equilibrium behavior along the path, but can also determine the

equilibrium outcome by imposing a default decision upon the arrival of the deadline. In

both bargaining and war of attrition models, the negotiating parties disagree because they

have opposing preferences over the outcome. In such situation of pure conflict, negotiation

may determine the distribution of payoffs between the parties but not their sum. Thus

protracted negotiation is invariably wasteful, as it introduces costly delay without any ben-

efits. However, when disagreement is driven by different private information, and could be

overcome after information-sharing, protracted negotiation can have positive welfare con-

sequences by facilitating information aggregation. This paper studies the welfare effects

of negotiation deadlines in an environment where the negotiating parties disagree both

because of diverging preferences and because of different information, and characterizes

the deadline that optimally balances the cost of strategic delay and the benefit of strategic

information aggregation.

More specifically, our model of negotiation under a deadline has two central aspects.

First, the underlying collective decision problem involves two proposed alternatives that

have both a common value component and a private benefit component. Although the two

sides can in principle reach a Pareto-preferred decision when the common value component

dominates the private benefits, they each have private information about the value of

their own proposed alternative. The presence of private information makes it difficult to

separate narrow self-interests from the common interest. Not being sufficiently convinced

that the opponent’s proposal has a high common value, each side may want to push its own

proposal for the private benefits despite knowing it has a low common value. At the same

time, a seemingly self-serving alternative may be proposed by one side who knows that
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the alternative is good for both, but the question is how to convince the opponent when

such private knowledge is unverifiable. The second aspect of our model is that the two

sides commit to engaging each other repeatedly in reaching an agreement. The collective

decision-making procedure does not allow side transfers, which might result in a failure to

share private information if the decision needs to be made without delay. But delaying the

decision is costly to both sides. The cost of delay can discourage them from exaggerating

the value of their own proposals, and generate endogenous information that in equilibrium

helps improve the quality of the collective decision.

The following examples illustrate a few negotiation problems that fit our theoretical

framework.

Standard adoption. In an emerging industry two dominant firms try to establish

a common standard or protocol. Both firms have an interest in adopting the standard

which is technologically more versatile and efficient. At the same time, because of its

head-start in development, each firm can obtain additional private benefits if its own

standard is adopted as the common industry standard. Even though written documents

of the proposed standards are shared in the negotiating stage, tacit knowledge about the

strengths and weaknesses of a protocol obtained from the developmental stage is difficult

to convey and easy to hide. Settling the issue through side transfers may not be a practical

solution in a fast-changing industry. At the same time, delaying in adopting a common

standard is costly to both firms regardless of the ultimate decision. Instead of an open-

ended negotiation, the two firms may have an interest in imposing a binding deadline.

Workplace safety. Labor-management disputes are sometimes purely about private

benefits, but there are also circumstances where the two sides would agree if only they could

share their private information. A labor union may be knowledgeable about the presence

of workplace hazards that would justify hiring additional workers in order to prevent major

accidents that would hurt both workers and the firm. Management may be aware that

market conditions and the firm’s financial position require downsizing the company in

order to prevent bankruptcy. Each side faces the problem of convincing the other side that

its claim is not motivated by narrow self-interest of expanding the workforce or cutting

costs, because the relevant information is not readily verifiable. Monetary transfers based
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on the decision may not be practical in such situation, and negotiation is costly to both

the labor union and the management.

Recruiting. When deciding on departmental hires, recruiting committee members

must often balance their personal research interest, which naturally biases them toward

hiring candidate in their own field, with the value added to the department as a whole from

hiring the candidate with the highest research potential. Each member might be willing to

go along with a candidate in a field other than his own if the candidate has a high research

productivity potential, but prefers one in his own field given two candidates with the same

potential. The relative lacking of expertise in other committee members’ field may make

each member suspicious of the other’s supposedly more informed assessments. Repeated

recruiting committee meetings are costly, not just because they take valuable time from

the members, but because delay in making a decision may lead to lost hiring opportunities.

However, it is precisely this cost that may yield a better hiring decision than one made

without delay.

Formally, we model negotiation under a deadline as a symmetric, continuous time, two-

player war-of-attrition game.1 There are two alternatives; each consists of a common value

component, which represents its quality and is shared by both players, and a private value

component, which benefits only one player. At any instant each player simultaneously

chooses to persist with his favorite alternative, from which he alone draws the private

benefit, or to concede to his rival for the latter’s favorite alternative. The two players pay

a flow cost of delay, until either they agree, at which point the agreement is implemented,

or the deadline expires and a random decision is made. Each player is privately informed

of whether the quality of his favorite alternative is high or low, but is unsure about the

quality of his opponent’s favorite alternative. We assume that the quality difference is

greater than the private benefit, so when a high-quality type plays against a low-quality

type, the two players would agree to adopt the high quality alternative if they could share

their information. However, when two low-quality types play against each other, they

1 See Farrell (1996) for a related model of standard adoption, with a continuous type space. He
does not consider deadlines. In a follow-up paper, Farrell and Simcoe (2007) introduce welfare analysis of
imposing a deadline. However, their analysis is restricted to the case that the presence of a deadline does
not affect the equilibrium behavior.
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would disagree even if they knew the true state due to the private benefit of choosing their

own favorite.2 The possibility of agreements is essential for deadlines to have interesting

welfare effects, and the possibility of disagreements makes information sharing costly to

achieve.

We show that generically there is a unique equilibrium in which the high-quality types

always persist with their favorite alternative throughout the game. The low quality type’s

behavior depends on the time left before the expiration of the deadline and on his belief

that the rival’s favorite alternative also has low quality. If the time to deadline exceeds a

certain critical horizon, which depends on the current belief, the low quality type concedes

to the opponent’s favorite alternative at some probability flow rate. This continuous-time

version of randomization between conceding and persisting results because the deadline is

too long for the low-quality type to persist all the way, but at the same time conceding

with a strictly positive probability would give the opposing low-quality type incentives to

persist just a little longer and reap the private benefit. Since the high-quality types always

persist, in this concession phase of the game the Pareto-efficient agreement is reached with

a positive probability. As the negotiation game continues during the concession phase, the

low-quality type becomes less sure that his opponent also has a low quality alternative

because, given the equilibrium strategies, his opponent’s failure to concede is taken as

evidence to the opposite. When the time to deadline reaches the critical horizon, the

game enters a persistence phase in which the low types stop randomizing and persist until

the deadline is reached. Interestingly, at the moment of the arrival of the deadline, the

behavior of the low-quality types may change again. If they enter the persistence phase

with a relatively high belief that their opponent also has a low quality alternative, they

will keep persisting to the very end. This case may be interpreted as a deadlock. If their

belief is low, however, they will switch to conceding just before the deadline expires. In

this case, one can interpret the behavior of the players during the persistence phase as a

stalling tactic.

2 There would also be disagreement when two high-quality types meet each other. This possibility is
assumed away in our model for simplicity.
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Extending the deadline hurts both the high-quality and low-quality types if the start-

ing point is shorter than the critical time horizon corresponding to the initial belief: it

increases the delay without changing the equilibrium play when the deadline arrives. On

the other hand, starting from any deadline beyond the critical time horizon, an extension

does not change the welfare of the low-quality types, whose equilibrium payoff is pinned

down by the payoff from concession and does not vary with the length of the deadline,

but generally affects the welfare of the high-quality types. It turns out that extending the

deadline is beneficial in the case of deadlock but is harmful in the case of stalling. By

prolonging the concession phase of the negotiation, extending the deadline increases the

chances that the high-quality type gets his favored decision at the cost of longer delay. In

the case of a deadlock, such improvement in decision-making during the concession phase

is relatively important because players have no chance to reach an agreement once the

game enters the persistence phase. In case of stalling, on the other hand, players will

eventually reach an agreement when the deadline expires. Therefore allowing more time

for concession at the beginning of the game is relatively important. Besides deadlock and

stalling, there is a third possibility in which low-quality types concede with a probability

between zero and one when the deadline expires. We show that extending the deadline is

also beneficial in this case. The contrasting marginal effects of lengthening the deadline

for these different cases allow us to pin down the optimal deadline.

We provide a complete characterization of the optimal deadline that maximizes the ex

ante payoffs to the players before they know their types. Naturally, the optimal deadline

is zero when the low-quality types initially hold a sufficiently low belief that the rival

also has low quality alternative, as the two players can reach the Pareto-efficient decision

without delay. For intermediate initial beliefs, the optimal deadline is such that after

the shortest concession phase the low-quality types persist until the deadline and then

concedes with probability one. Thus, the optimal deadline is the shortest time length that

achieves efficient information aggregation in equilibrium. This deadline effectively balances

the trade-off between two conflicting goals—to avoid wasteful delay when disagreements

are of fundamental nature, and to allow the players sufficient time to successfully reconcile

disagreements driven by different information. When positive, the optimal deadline is
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necessarily finite, because given that the low-quality types concede with probability one at

the deadline, extending it further would only hurt the high-quality types by unnecessarily

prolonging the concession phase. Further, it cannot be arbitrarily short. Otherwise, the

low-quality types would simply persist until the deadline and waste the delay cost. Finally,

when positive, the optimal deadline is increasing in the low-types’ initial belief that their

rival also has a low quality alternative, because it takes longer to drive their belief down to

a level at which they will be willing to concede upon the deadline. When the low-quality

types have a sufficiently high belief, the optimal deadline is again zero. The positive

welfare effects from information aggregation, obtained by extending the deadline beyond

the critical horizon, are not sufficient to compensate the large payoff loss associated with

the long deadline play.

The idea that endogenous delay can help separate one type from another type in

bargaining with asymmetric information is not new (e.g., Admati and Perry 1987; Cramton

1992). We carry this idea further by studying how imposing negotiation deadlines may

affect equilibrium behavior and outcome. Moreover, since the decision to be made has a

common value component, there is a non-trivial welfare analysis of the trade-off between

longer delay and better information sharing. This trade-off is the basis of our analysis of

optimal deadlines.

There is a sizable theoretical literature on war of attrition and bargaining games con-

cerning the “deadline effect,” the idea that players make no attempt at reaching an agree-

ment just before the deadline, but when the deadline arrives there are sudden attempts to

resolve their differences.3 Hendricks, Weiss and Wilson (1988) characterize mixed-strategy

Nash equilibria of a continuous time, complete information war of attrition game, in which

there is a mass point of concession at the deadline and no concession in a time interval pre-

ceding it. Spier (1992) shows that in pretrial negotiations with incomplete information, the

settlement probability is U-shaped. Ma and Manove (1993) find strategic delay in bargain-

ing games with complete information by assuming that there may be exogenous, random

3 See also Roth, Murnighan and Shoumaker (1988) for an experimental investigation of eleventh hour
agreements in bargaining. In the auction literature, “sniping” refers to bidding just before the auction
closes. This has been analyzed by Roth and Ockenfels (2002).
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delay in offer transmission. As early offers are rejected and the deadline approaches, there

is an increasing risk of missing the deadline and negotiation activities pick up. Also in a

bargaining game with complete information, Fershtman and Seidmann (1993) introduce

the assumption that, by rejecting an offer, players commit to not accepting poorer offers

in the future. They show that when players are sufficiently patient, there is a unique sub-

game perfect equilibrium in which players wait until the deadline to reach an agreement.

Ponsati (1995) studies a war of attrition game in which each player has private information

about his payoff loss incurred by conceding to the opponent and must choose the timing

of concession. She shows that there is a unique pure strategy equilibrium in which both

players never concede before the deadline is reached if their payoff losses are sufficiently

large. Sandholm and Vulkan (1999) consider a bargaining game in which two players make

offers continuously and an agreement is reached as soon as the offers are compatible with

each other. The only private information a player has is the deadline he faces. They show

that the only equilibrium is each player persisting by demanding the whole pie until the

deadline and then switching to concede everything to his opponent. Finally, Yildiz (2004)

shows that when players in a bargaining game are overly optimistic about their bargaining

power at the deadline, it is an equilibrium to persist until close to the deadline to reach

an agreement. However, when there is uncertainty about when the deadline arrives, the

deadline effect disappears. Broadly consistent with the above papers, we offer a theory

of the deadline effect in which there may be an eleventh-hour attempt at concession to

reach an agreement before the deadline expires. But in addition to such stalling behav-

ior, our model also allow for the possibility that deadlines may induce deadlock, in which

disagreements persist through the end. More importantly, because our theory is based

on asymmetric information about common values, we are also able to provide a welfare

analysis of the optimal deadline.

2. A Repeated Proposal Game

We consider a symmetric model in which two players have to make a joint choice between

two alternatives. Each alternative has a common value component and a private value

component. The common value component produces either a low benefit υL or a high
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benefit υH to both players, with υH > υL > 0. Regardless of its common value, each

alternative also has a private value component which yields a benefit β > 0 to only one of

the players.4 We refer to a player’s “favorite” alternative as the one that would give him

the private benefit β. That is, the payoff to each player from implementing his favorite

alternative is equal to its common value plus β, and the payoff from implementing his

opponent’s favorite alternative is just the common value of that alternative. To make our

model interesting, we maintain the following assumption throughout this paper.

Assumption 1. υH − υL > β.

Each player is privately informed only about whether the common value of his own

favorite alternative is high or low, referred to as “high type” and “low type” correspond-

ingly. We assume that at most one of the two alternatives can be of high common value.

Thus there are two symmetric “agreement states” and one “disagreement state:” in each

agreement state, one player is high type and other is low type, so by Assumption 1 the

two players would agree on the former’s favorite alternative if they knew the state; in the

disagreement state, both players are low type, so they would continue to disagree even if

they knew the state.5 That is, if a player is a high type, he knows that his opponent is a low

type and it is an agreement state in which his favorite alternative should be implemented;

and if he is a low type, he is unsure whether it is an agreement state for his opponent’s

favorite alternative or it is a disagreement state. Let γ0 < 1 be the common belief of

the low types that it is the disagreement state; we assume that it is common knowledge.

The implied prior probability of the disagreement state is then γ0/(2− γ0), and the prior

probability of each agreement state is (1− γ0)/(2− γ0).

The repeated proposal game is modeled in continuous time, running from t = 0 to

the deadline T . We allow T to be infinite. The two players simultaneously propose one

4 The assumption that the private benefit is independent of the common value is made purely for
notational convenience. In the more general case, Assumption 1 below restricts only the private benefit to
each player from implementing his favorite alternative when its common value is low. All our results hold
without change so long as the private benefit is non-negative when the common value is high.

5 We assume that there is no fourth state in which both alternatives have high common value. Allowing
for such a possibility would not greatly change the equilibrium analysis of the model but would lower the
advantages from using delay as a collective decision-making mechanism in the welfare analysis, because
delay would be wasteful when two high types play against each another.
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of the alternatives at each instant t, until the game ends. The game may end before the

deadline if the two proposals by the two players agree, in which case the agreed alternative

is implemented immediately. If instead the deadline T is reached, the game ends with the

decision made by a fair coin flip. Until the game ends, each player incurs an additive payoff

loss due to delay at a flow rate of δ.

The essential feature captured in the above configuration of preference and information

structures, together with Assumption 1, is that players in a negotiation disagree over the

joint decision based on their private information but might agree if their information were

public. In particular, based on his own initial private information a low type player strictly

prefers his favorite choice if

γ0 > γ∗ ≡
υH − υL − β

υH − υL

,

although it may be the agreement state for his opponent’s favorite alternative. Note that

by Assumption 1, γ∗ is strictly between 0 and 1. An initial belief γ0 higher than γ∗ that

it is the disagreement state means that there is a great degree of conflict between the

two players. Another important feature of our model is that the high types have greater

incentives to insist on their favorite alternative than do the low types. This is because the

payoff gain for each player from implementing his favorite alternative over his opponent’s

favorite is larger in the corresponding agreement state (equal to υH − υL + β) than in the

disagreement state (equal to β). This feature is helpful for equilibrium construction as it

allows us to focus on the incentives of the low types.

Our modeling of the deadline amounts to specifying state-contingent default payoffs if

the last attempt at an agreement fails. To see this, note that when T = 0 our model reduces

to a static game in which each player can propose either alternative, and the outcome is

that an agreement is implemented immediately and a disagreement results in a decision

made by a coin flip. When the belief γ of the low types that it is the disagreement state

is strictly higher than γ∗, this game has a unique equilibrium with each player proposing

his favorite alternative. The equilibrium outcome is a coin flip, as the degree of conflict is

too large to allow any information sharing.6 For any belief of the low types γ < γ∗, there

6 There is no mechanism that Pareto-improves on this outcome. More precisely, for any γ > γ∗, in any
incentive compatible outcome of a direct mechanism without transfers the probability of implementing a
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is a unique equilibrium in which the high types propose their own favorite and the low

types propose the favorite alternative of their opponent. At γ = γ∗, there is a continuum

of equilibria, in which the high types always propose their favorite while the low types

propose their favorite with a probability between zero and one. Denoting as U0
L
(γ) and

U0
H

(γ) the equilibrium payoffs of the low and high types respectively, we have

U0
L
(γ) =

�
1
2γ(2υL + β) + (1− γ)υH if γ ∈ [0, γ∗),
1
2γ(2υL + β) + 1

2 (1− γ)(υH + υL + β) if γ ∈ (γ∗, 1]
(1)

with

U0
L
(γ∗) ∈

�
1
2
γ∗(2υL + β) +

1
2
(1− γ∗)(υH + υL + β),

1
2
γ∗(2υL + β) + (1− γ∗)υH

�
;

and

U0
H

(γ)






= υH + β if γ ∈ [0, γ∗),

∈
�

1
2 (υH + υL + β), υH + β

�
if γ = γ∗,

= 1
2 (υH + υL + β) if γ ∈ (γ∗, 1].

Due to the symmetry of the model, any outcome in the disagreement state is Pareto-

efficient. Thus, if γ ∈ [0, γ∗), both the high and the low types receive their first best

expected payoffs. However, when γ ∈ (γ∗, 1], the equilibrium outcome is inefficient, as

the expected payoffs for both types would increase if the low type agree to his opponent’s

favorite alternative instead of a coin flip.7

In our model of negotiation under a deadline, the deadline simply means deciding by

a coin flip at a fixed future date T if no agreement has been reached. In practice, reaching

the negotiation deadline without an agreement may instead trigger a binding arbitration

process by an independent outside party that may involve activities such as presentations

by each player or fact-finding by the arbitrator. We have taken a reduced-form approach

fixed alternative is constant across the three states. See Damiano, Li and Suen (2009) for a formal
argument.

7 The specification of the default decision as a coin flip when the deadline expires implies stark payoff
discontinuities in the no-delay game when the belief of the low types that it is the disagreement state is
exactly γ∗. Our characterization of the optimal deadline turns out to be robust with respect to the payoff
discontinuities. Section 5.2 presents an extension of the model with an alternative specification of the
deadline default payoffs that eliminates the discontinuities. All our results are qualitatively unchanged.
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by abstracting from such details of deadline implementation. The essential feature of the

deadline we are trying to capture in this model is the ex ante two-part commitment: the

negotiating parties commit to both not terminating the negotiation process before the

fixed date T , and to not extending it beyond T . Although in reality both parts of this

commitment are vulnerable to ex post renegotiation, we assume away the credibility issues

in order to take the first step towards understanding welfare implications of deadlines.

3. Preliminary Analysis

We refer to as “persisting” the act of a player proposing his own favorite alternative, and

“conceding” the act of proposing his opponent’s favorite alternative. We will restrict our

analysis to perfect Bayesian equilibria in which the high types persist with probability

one throughout the game. We impose no restriction on the strategies of the low types

and consider both strategies in which they mix between persisting and conceding at a

given instant of time, as well as strategies where they mix continuously over an interval of

time. For histories of “regular disagreement” where both players have persisted since the

beginning of the game, such strategies can be described through two functions y : [0, T ]→

[0, 1] and x : [0, T ]→ [0,∞), with the convention that x(t) = 0 whenever y(t) > 0. At any

instant t ∈ [0, T ] reached by the game, y(t) is the probability that the low type concedes

upon reaching time t. When y is zero on a small time interval, x(t) denotes the flow rate of

concession at any t in the interval [t, t+dt). That is, upon reaching time t, the probability

of a low type proposing his rival’s alternative in the interval is x(t)dt. How the game is

played after a “reverse disagreement,” where both players simultaneously concede, does

not matter to our equilibrium construction and the welfare analysis.8 For convenience, we

assume that these are terminal histories where the decision is made by a coin toss.

3.1. Differential equations

In this section we derive some useful properties that hold in any symmetric equilibrium

where the low types concede at flow rate x(t) > 0 for all t in some interval of time [t1, t2),

8 Reverse disagreements occur with probability zero both on the path in the equilibrium constructed
below and after unilateral deviations. In proving that our equilibrium is generically unique, we require
only that the continuation payoffs after a reverse disagreement are feasible.
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while the high types always persist. In any such equilibrium, by indifference the equilibrium

expected payoff UL(t) of a low type upon reaching t ∈ [t1, t2) can be computed by assuming

that he concedes at t. Denoting as γ(t) his belief at time t that it is the disagreement state,

we have

UL(t) = γ(t)υL + (1− γ(t))υH . (2)

The above follows because by assumption y(t) = 0, and so even if his low type opponent’s

flow rate of concession is strictly positive, the probability that the latter concedes at the

given time t is zero. Since UL(t) depends on t only through γ(t) in (2), we can define a

payoff function

UL(γ) = γυL + (1− γ)υH , (3)

which is valid whenever γ = γ(t) and x(t) > 0 for some t ∈ [t1, t2).

Given that the equilibrium continuation payoff of the low type is pinned down by

the belief γ(t) for any t in the interval of time [t1, t2), the indifference condition between

conceding and persisting on the same interval then gives an equation that relates the rate of

change of the belief γ to its current value γ(t) and to the equilibrium flow rate of concession

x(t). Furthermore, the Bayesian updating rule provides another equation that relates the

rate of change of γ(t) to x(t). These two equations can be combined to obtain a differential

equation for the evolution of the belief of the low type in [t1, t2). This result is stated in

Lemma 1 below, and proved in Appendix A. An immediate implication of Lemma 1 is that

the equilibrium belief of the low type γ(t) and the equilibrium rate of concession x(t) in

the time interval (t1, t2) are functions of the starting belief γ(t1) only.

Lemma 1. Let (y(t), x(t)) be the strategy and γ(t) the belief of the low types in a symmetric

equilibrium where the high types always persist. If y(t) = 0 and x(t) > 0 for all t ∈ [t1, t2),

then

− γ̇(t)
1− γ(t)

=
δ

β
, (4)

and

x(t) =
1

γ(t)
δ

β
.
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Equation (4) represents the belief evolution for a low type who continuously random-

izes and whose opponent has failed to concede so far. Since the high types persist with

probability one, γ̇(t) is negative; that is, the low types attach a lower probability to the

disagreement state as the negotiation game continues. The indifference condition between

persisting and conceding then implies that the low types concede at an increasing flow rate

as disagreement continues.

We can also use the equilibrium characterization of the flow rate of concession to pin

down the evolution of the equilibrium continuation payoff for the high types. For any

t ∈ [t1, t2), let UH(t) be their expected payoff at time t. Since the high types always

persist, their payoff function satisfies the following Bellman equation:

UH(t) = x(t)dt (υH + β) + (1− x(t)dt)(−δdt + UH(t + dt)).

This can be written as a differential equation by taking dt to 0:

U̇H(t) = δ − x(t)(υH + β − UH(t)). (5)

Further, since γ(t) is determined by an autonomous differential equation and x(t) depends

on t only through γ(t) as given in Lemma 1, we can also describe the equilibrium contin-

uation payoff of the high types as a function UH(γ). Using U̇H(t) = U �
H

(γ(t))γ̇(t), we can

show that it satisfies the differential equation

U �
H

(γ) =
υH + β − UH(γ)

γ(1− γ)
− β

1− γ
. (6)

Note that the equilibrium payoff to the high types is a function of the belief of the low

types, even though the former know the state and always persist in equilibrium.

3.2. Equilibrium with no deadline

When there is no deadline to the negotiation process (i.e., T = ∞), the characterization

result of Lemma 1 is sufficient for us to construct an equilibrium where the low types

concede at a strictly positive flow rate until a time when they concede with probability

one. The equilibrium strategy and the evolution of beliefs along the equilibrium path are

entirely pinned down by the initial belief, and the atom of concession occurs when the low
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types become entirely convinced that it is an agreement state. Let g(t; γ0) be the unique

solution to the differential equation (4) with the initial condition g(0; γ0) = γ0, given by

g(t; γ0) = 1− (1− γ0)eδt/β . (7)

Define the “terminal date” D(γ0) such that g(D(γ0); γ0) = 0, given explicitly by

D(γ0) = −β ln(1− γ0)
δ

. (8)

Proposition 1. Let T =∞. There exists a symmetric equilibrium where the high types

always persist, and where the strategy (y(t), x(t)) and the belief γ(t) of the low types are

such that:
�

y(t) = 0, x(t) = δ/(βγ(t)), and γ(t) = g(t; γ0) if t < D(γ0),

y(t) = 1, and γ(t) = 0 if t ≥ D(γ0).

By construction, the low types are indifferent between conceding and persisting at

any time t < D(γ0). Further, conceding is optimal at t = D(γ0) for them because their

belief that it is the disagreement state becomes zero at that point.9 For the high types,

from the equilibrium strategies, their continuation payoff at the terminal date is the first

best payoff υH + β. In Appendix A, we use this boundary condition to explicitly solve

the differential equation (6) for the high types’ continuation payoff for any t < D(γ0), and

verify that it is optimal for them to always persist.

In equilibrium, protracted negotiations make the low types increasingly convinced that

it is the agreement state supporting the rival’s favorite choice, and motivate them to con-

cede at an increasing rate. This distinctive feature of “gradually increasing concessions,”

unique to our model of negotiation that combines preference-driven and information-driven

disagreements, has implications for the duration of the negotiation process and its hazard

rate function. Denote as τHL and τLL the random duration of the game conditional on

it being an agreement state and the disagreement state respectively. In the former case

9 The game ends with probability one before t = D(γ0). We specify the strategy and the belief of the
low types after the terminal date to complete equilibrium description after unilateral deviations.
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one of the player is a high type, while in the latter case both are low. Since x(t)dt is the

probability that the game ends in time interval (t, t+dt] conditional on it having survived

up to time t, the hazard function of τHL is simply x(t). When it is the disagreement

state, independent randomization by the two players implies that the cumulative distri-

bution functions FHL(t; γ0) of τHL and the distribution function FLL(t; γ0) of τLL satisfy

1−FLL(t; γ0) = (1−FHL(t; γ0))2, and thus the hazard function of τLL is 2x(t). The hazard

rate is therefore increasing in time in both cases. From an outside observer’s point of view,

however, the more interesting object is the unconditional duration of the negotiation game.

Let τ represent this random variable, and F (t; γ0) its distribution function. As the game

continues, the conditional hazard rates for τHL and τLL both increase, but the probability

that τ = τHL, which is associated with a lower hazard rate, also increases, so it is not

obvious whether the unconditional hazard rate for τ will increase over time.10 However,

from the relationship

1− F (t; γ0) =
γ0

2− γ0
(1− FLL(t; γ0)) +

2(1− γ0)
2− γ0

(1− FHL(t; γ0))

we can obtain the hazard function of τ as 2δ/(βg(t; γ0)(2− g(t; γ0))), which is decreasing

in g(t; γ0).11 Since in equilibrium the belief of the low types that it is the disagreement

state decreases as disagreements continue, the unconditional hazard rate unambiguously

increases in time. Combined with the fact that the belief g(t; γ0) is increasing in γ0 for

any t, an increase in the initial belief, representing a greater degree of conflict, reduces

the unconditional hazard rate, and hence increases the unconditional expected duration of

negotiation.

10 This is similar to the classic problem of duration dependence versus heterogeneity in the econometric
analysis of duration data. See, for example, Heckman and Singer (1984).

11 To derive the hazard function for τ , note that the conditional density functions fHL(t) and fLL(t)
and the unconditional density function f(t) satisfy

f(t)

1− F (t)
=

γ0fLL(t) + 2(1− γ0)fHL(t)

γ0(1− FLL(t)) + 2(1− γ0)(1− FHL(t))
.

The final result is obtained by using 1 − FHL(t) = exp{−
�

t

0
x(s)ds} = g(t)(1 − γ0)/(γ0(1 − g(t))) and

fHL(t) = (1− FHL(t; γ0)))δ/(βg(t)), and the corresponding expressions for FLL and fLL.
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4. Finite Deadlines

We use the analysis in the previous section to construct a symmetric equilibrium in which

the high types always persist, and the low types generally start by continuously random-

izing between conceding and persisting when the time to the deadline is sufficiently long,

stop and persist until just before the deadline is reached, and play an equilibrium of the

no-delay game (T = 0) corresponding to the stopping belief. We later argue that this

equilibrium is unique subject to the restriction that the high types always persist.

A remarkable feature of our construction is that the equilibrium randomization strat-

egy of the low types is identical to the no-deadline case (T =∞). That is, when the time

to the deadline is sufficiently long, they behave as if there is no deadline. This feature is

the main analytical advantage of a continuous time framework over a discrete time model.

It follows from equation (3) in our preliminary analysis, because there is a unique equilib-

rium value function for a randomizing low type that depends on the time to deadline only

through his belief.

4.1. Construction of an equilibrium

The necessity of having a persistence phase in equilibrium before the deadline is reached

can be easily understood as follows. At any time t when the belief of a low type is γ(t) = γ

and he is conceding with a positive flow rate, his payoff is pinned down by the the function

UL(γ) given in equation (3). For any γ > 0, this payoff is strictly lower than the payoff from

the no-delay game U0
L
(γ) as given in equation (1). If the time remaining to the deadline,

T − t, is sufficiently short, persisting until the end and playing a no-delay equilibrium

when the deadline arrives would constitute a profitable deviation for him. This deadline

effect of having a persistence phase just before the deadline is robust with respect to our

game specification. Whenever the default payoff at the deadline of a negotiation game

yields an equilibrium payoff upon reaching the deadline that is larger than the payoff from

concession, then in any equilibrium a period of inactivity always precedes the arrival of

the deadline.12

12 A similar deadline effect is present in existing models of war of attrition (e.g., Hendricks, Weiss and
Wilson, 1988). The novel feature of our model as a war of attrition game is that endogenous information
about the state is generated as the game continues, so that the deadline effect depends on the initial belief
through the equilibrium belief evolution prior to stopping.
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How long the persistence phase can last in equilibrium depends on the difference

between the payoff from immediate concession UL(γ) and the payoff in the no-delay game

U0
L
(γ). To state our equilibrium characterization result in the next proposition, we define

B(γ) as the longest length of time from the deadline such that it is an equilibrium for a low

type with belief γ to persist until the deadline and then play an equilibrium corresponding

to the no-delay game associated with γ. In other words, the value of B(γ) measures the

maximum length of the persistence phase when the low types start with belief γ. For any

belief γ �= γ∗, this is uniquely given by

U0
L
(γ)− δB(γ) = UL(γ).

Since U0
L
(γ∗) assumes a continuum of values, corresponding to the probability of conceding

ranging from zero to one, we choose the maximal value in the above equation to define

B(γ∗). Using the expressions for U0
L
(γ) and UL(γ), we have

B(γ) =

�
βγ/(2δ) if γ ≤ γ∗,

β(γ − γ∗)/(2δ(1− γ∗)) if γ > γ∗.
(9)

Note that B(γ) is discontinuous at γ∗. Next, for an initial belief γ0, we describe how long

it takes, in equilibrium, before the persistence phase begins. To do so, we define S(T ; γ0)

as the earliest calendar time t such that the time-to-deadline is shorter than B(γ(t)) given

that the belief γ(t) of the low types evolves according to (7) starting with γ0. That is,

S(T ; γ0) = inf
t≥0

{t : T − t ≤ B(g(t; γ0))}. (10)

The two functions S(T ; γ0) and T − S(T ; γ0) describe the length of the concession and

the persistence phases respectively in our equilibrium characterization. In other words,

S(T ; γ0) is the phase-switch time, or the time of stopping concessions, with the corre-

sponding stopping belief of the low types, g(S(T ; γ0); γ0), remaining until the deadline T

arrives. Note that by definition, S(T ; γ0) = 0 if T ≤ B(γ0).

Proposition 2. Let T be finite. There exists a symmetric equilibrium in which the high

types always persist, and the strategy (y(t), x(t)) and the belief γ(t) of the low types are
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such that:






y(t) = 0, x(t) = δ/(βγ(t)), γ(t) = g(t; γ0) if T − t > B(g(t; γ0)) and t < D(γ0),

y(t) = 0, x(t) = 0, γ(t) = g(S(T ; γ0); γ0) if B(g(t; γ0)) ≥ T − t > 0 and t < D(γ0),

y(t) = 1, γ(t) = 0 if T > t ≥ D(γ0);






y(T ) = 0, γ(T ) = g(S(T ; γ0); γ0) if g(S(T ; γ0); γ0) > γ∗,

y(T ) = 2δ(T − S(T ; γ0))/(βγ∗), γ(T ) = γ∗ if g(S(T ; γ0); γ0) = γ∗,

y(T ) = 1, γ(T ) = g(S(T ; γ0); γ0) if g(S(T ; γ0); γ0) < γ∗.

The logic of Proposition 2 is apparent from our construction of B(γ) and S(T ; γ0).

For each belief γ of the low types, the equilibrium payoff function U0
L
(γ) in the no-delay

game gives a continuation equilibrium outcome at the instant when the deadline arrives,

providing the starting point for backward induction. This continuation equilibrium out-

come is unique if γ �= γ∗, and so if the deadline T is short relative to the initial belief

γ0, i.e., if T ≤ B(γ0), the equilibrium is for the low types to persist until the deadline

and then play the continuation equilibrium corresponding to γ0. By construction, when

T = B(γ0), the equilibrium payoff to the low types is precisely UL(γ0). If γ0 = γ∗ and

T ≤ B(γ∗), we choose a continuation equilibrium in the no-delay game, corresponding to

a probability of concession y(T ) = 2δT/(βγ∗), such that the low types obtain the payoff of

UL(γ∗) from this deadline play.13 If the deadline T is sufficiently long relative to the initial

belief γ0, the low types start by conceding with a flow rate x(t) given in Proposition 1 for

the no-deadline game until t = S(T ; γ0), when the belief becomes g(S(T ; γ0); γ0) and the

payoff reaches UL(g(S(T ; γ0); γ0)), followed by the deadline play. Finally, if the deadline

T is too long, with T ≥ D(γ0), the equilibrium is identical to the one constructed in the

no-deadline game.14 Details of the proof of Proposition 2 (including the argument that

the high types will indeed persist throughout) are presented in Appendix A.

The equilibrium behavior of the low types is illustrated in Figure 1. The horizontal axis

represents both the deadline T and, for a fixed T , the time remaining before the deadline is

13 Since any y(T ) greater than 2δT/(βγ∗) preserves the incentives for the low types to persist, there is
a continuum of equilibria when γ0 = γ∗ and T < B(γ∗).

14 In this case, (10) implies that the phase-switch time S(T ; γ0) is equal to D(γ0) and the corresponding
belief g(S(T ; γ0); γ0) is zero.

18



Q(γ)

S(γ)

P (γ)

D =

C −

A +

B +

F −

E −

0

γ∗

1

belief of the
uninformed

time remaining to deadline

Figure 1

reached. The vertical axis is the belief of the low types. For ease of interpretation, we have

shown the discontinuous function B(γ) as the thick piecewise-linear graph. It represents

the boundary in the T -γ space between the persistence phase when the low types persist

until the deadline and their belief does not change, and the concession phase when they

concede with a positive and increasing flow rate and their belief continuously drops. If

the deadline T is neither too long nor too short relative to the initial belief γ0, that is, if

T ∈ (B(γ0),D(γ0)), the unique phase-switch time S(T ; γ0) from the concession phase to

the persistence phrase is defined in equation (10). The dotted curves in Figure 1 traces

the equilibrium evolution of the belief γ(t) until the phase-switch time. For example, for

any for any deadline T and initial belief γ0 on the dotted curve D∗, the equilibrium belief

will reach γ∗ at time T −B(γ∗), that is,

g(D∗(γ0)−B(γ∗); γ0) = γ∗. (11)

Similarly, for any deadline T and initial belief γ0 on the curve D∗, the equilibrium belief

will reach γ∗ at time T . The curve D is given by the terminal date function in equation
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(8). For any deadline T and initial belief γ0 on D, the equilibrium belief will reach zero at

time T . Since the law of motion for equilibrium belief does not depend on the deadline T

in the concession phase, the three dotted curves in Figure 1 are horizontal displacements of

one another. Moreover, for any (T, γ0) that lies above one of these curves, the trajectory

of equilibrium belief will stay above the same curve throughout the concession phase.

Therefore, we can summarize the equilibrium play of the low types by partitioning the T -γ

space of Figure 1 into six regions:15

Region I. The low types concede with a flow rate δ/(βg(t; γ0)) for t < S(T ; γ0), and persist

for t larger.

Region II. The low types concede with a flow rate δ/(βg(t; γ0)) for t < S(T ; γ0), persist

for all t ∈ [S(T ; γ0), T ), and concede with probability 2δ(T − S(T ; γ0))/(βγ∗)

at t = T .

Region III. The low types concede with a flow rate δ/(βg(t; γ0)) for t < S(T ; γ0), persist

for all t ∈ [S(T ; γ0), T ), and concede with probability one at t = T .

Region IV. The low types concede with a flow rate δ/(βg(t; γ0)), with the game ending

with probability one by the terminal date D(γ0) before the deadline expires.

Region V. The low types persist for all t.

Region VI. The low types persist for all t < T and concede with probability one at t = T .

Each of the six regions above has its own distinctive features. Together they provide a

rich set of negotiation dynamics that are possible in our model. In Region IV, the deadline

is not binding. Gradual concessions are made at an increasing rate until an agreement

is reached as if there is no deadline; the dynamics of endogenous information aggregation

is already described in the previous section. In all other regions, the deadline is binding,

with the effect of suspending the negotiations at some point of the process in anticipation

of the arrival of the deadline. When the deadline is too short, in both Regions V and

VI, and on the boundary between Regions VI and II, this effect takes hold at the very

beginning so there is no attempt at resolving the differences before the deadline. The

15 The boundary between Regions II and V I is formally part of Region II. We have S(T ; γ0) = 0
so there is no concession phase and the low types concede at t = T with probability 2δT/(βγ∗). The
assignment of other boundaries is immaterial.
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difference between the two regions is that V represents a “deadlock” with no hope of ever

reaching an agreement because the initial degree of conflict is too high, while the deadline

effect in VI describes a “stalling” tactic before an eleventh-hour attempt at striking an

agreement. When the deadline is sufficiently long relative to the initial degree of conflict,

in Regions I, II and III, negotiations all start off with gradual and increasing concessions

as in Region IV. The difference among the three regions lies in how much time and conflict

remain when the deadline effect kicks in after the unsuccessful initial attempts. In Region

I, too little time is left to overcome the residual conflict, so the negotiation becomes a

deadlock. The opposite happens in Region III, as there is a complete change of position

in the final attempt to reconcile the difference after a stalling period. In between we have

Region II, where more time left when the deadline effect kicks in means a greater chance

of reaching an agreement at the deadline.

4.2. Uniqueness of the equilibrium

The equilibrium constructed in Proposition 2 is generically unique in the class of per-

fect Bayesian equilibria with the high types always persisting. This is perhaps surprising,

because the amount of endogenous information generated in equilibrium during the con-

cession phase depends on the flow rate of concession of the low types, which in turn is

determined by how much they learn in equilibrium about the state. One may wonder if it

is possible to construct multiple equilibria by coordinating through calendar time the flow

rate of concession of the low types. For example, after trying but failing to reach an agree-

ment by conceding with a positive flow rate, the low types may persist for a fixed length

of time before resuming a new concession phase. However, this and other possibilities for

multiple equilibria are ruled out by the following proposition.

Proposition 3. Given any deadline T and initial belief γ0 of the low types, except for

T < B(γ∗) and γ0 = γ∗, there is a unique equilibrium in which the high types always

persist.

When T < B(γ∗) and γ0 = γ∗, there is a continuum of equilibria in which the high

types always persist and the low types persist for all t < T followed by any probability

of concession equal to or greater than 2δT/(βγ∗) at the deadline. This multiplicity of
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equilibria is due to the multiplicity in the no-delay game (T = 0) when the initial belief

of the low types is γ∗. However, it is not generic, because for the same T < B(γ∗) the

equilibrium is unique when γ0 is different from γ∗, no matter how small the difference is.16

Moreover, since at γ0 = γ∗ there is an equilibrium in the no-delay game with the first best

payoffs, we argue that the optimal deadline for γ0 = γ∗ is T = 0, and thus the particular

multiplicity at γ∗ does not affect our characterization of the optimal deadline.

The generic uniqueness of the equilibrium is important for our main objective in this

paper, which is to characterize the ex ante optimal deadline. Moreover, Proposition 3 holds

even in the case of T =∞. The equilibrium described in Proposition 1 for the no-deadline

case is a unique equilibrium in which the high types always persist. This implies that

the equilibrium strategies in the game with finite deadline T cannot be supported as part

of equilibrium in a no-deadline game, which means that deadlines are more than a mere

coordinating device to select among multiple equilibria. In Appendix A we formally prove

Proposition 3 by establishing a series of claims about the properties of any equilibrium.

Here, we give intuitive explanations for some of the properties to highlight the underlying

logic of why the equilibrium is unique.

A key step in establishing the generic uniqueness of the equilibrium is to show that

in any equilibrium the low types cannot concede with a strictly positive probability before

the deadline arrives. Intuitively, if a low type concedes with probability y(t) > 0 at some

time t < T , then the opposing low type could persist at t and concede immediately after.

The payoff gain relative to conceding would be strictly positive because y(t) > 0, while

the loss from the extra delay would be arbitrarily small. An immediate implication is that

at any time before the deadline, a low type must either persist with probability one or

concede with a positive flow rate. In other words, the equilibrium play of a low type must

either be in a persistence phase or in a concession phase.

In any equilibrium the persistence and concession phases of the two low types must be

synchronized. That is, if the flow rate of concession x(t) for one low type is positive in some

16 In addition, the multiplicity of equilibria for T < B(γ∗) and γ0 = γ∗ is not robust with respect to the
specification of the default payoffs in the no-delay game. In the model of Section 5.2 where we introduce
a penalty that the players incur if they fail to reach an agreement when the deadline expires, the same
argument for Proposition 3 can be used to establish that the equilibrium is unique for all T and γ0.
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interval period of time, then the same is true for his low type opponent. This is because

if a low type is continuously indifferent between conceding and persisting in an interval

period of time, his belief that it is a disagreement state must change over time. Otherwise,

conceding at the beginning of the interval would give him the same expected payoff from

the outcome but with a smaller delay cost. Synchronization then follows because his belief

changes only if his opponent’s flow rate of concession is positive. Conversely, if a low

type persists in some time interval, then so does the opposing low type. Thus, the belief

of neither player changes in a synchronized persistence phase. Since the payoff to a low

type UL(γ(t)) in a concession phase is pinned down by the corresponding belief γ(t) and

is computed with the opposing low type persisting at t, a persistence phase cannot be

followed by a concession phase. Otherwise, each low type would strictly prefer to concede

with probability one during the persistence phase to avoid the payoff loss from the delay,

which we already argue cannot happen in an equilibrium.

Our game is symmetric. In any equilibrium the two low types not only synchronize

their persistence and concession phases with the same phase-switch time, they also adopt

identical strategies in the concession phase and in the deadline play. At the phase-switch

time, both low types must be indifferent between immediate concession and continua-

tion with the deadline play. Since their expected payoffs from both options are functions

of their individual beliefs only, for the indifference conditions to hold at the same time,

their beliefs must coincide. The symmetry of the equilibrium strategy of the low types in

the concession phase then follows, because the uniqueness of the solution of the differen-

tial equation (4) implies that the beliefs of the two players coincide at the phase-switch

time only if they are identical throughout the concession phase. Given the symmetry,

the construction of the boundary B(γ) and the phase-switch time S(T ; γ0) is unique due

to the indifference of the low types between an immediate concession with the corre-

sponding payoff UL(g(S(T ; γ0); γ0)) and the deadline play with the corresponding payoff

U0
L
(g(S(T ; γ0); γ0))− δB(g(S(T ; γ0); γ0)), yielding the uniqueness of the equilibrium.

4.3. Optimal deadline

In this subsection we characterize the ex ante optimal deadline for the repeated proposal

game. We start by studying the effects of marginally extending the deadline T on the
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equilibrium payoffs of the high and low types in the different regions of the T -γ0 space.

Refer to Figure 1.

In Regions V and VI of Figure 1, where T < B(γ0) and γ0 �= γ∗, the deadline is too

short relative to the initial belief to allow a concession phase. The welfare effect of the

deadline is clearly negative. Extending the deadline just makes the low types persist for a

longer period of time without changing their behavior at the deadline. Consequently, both

the high and low types are hurt by a longer deadline.

In Region IV, where T ≥ D(γ0), the deadline is too long to allow a persistence phase.

There is no welfare effect. Since the negotiation ends before the deadline with probability

one, extending it further will not affect the equilibrium behavior or payoffs.

In Region II, where T ∈ [D∗(γ0),D∗(γ0)), the effect of lengthening the deadline is

to make the low types persist longer after the phase switch, but concede with a larger

probability when the deadline arrives. Since the behavior of the players during the conces-

sion phase does not depend on T , the phase-switch time S(T ; γ0) is also independent of T .

Once the negotiation enters the persistence phase, the low types persist from time S(T ; γ0)

through T , and then concede with probability 2δ(T − S(T ; γ0))/(βγ∗). Lengthening the

deadline increases the delay for the high types, but also increases their chance of getting

their favorite decision rather than a coin toss. The net effect on the welfare of the high

types is
∂UH(γ0)

∂T
= −δ +

2δ

βγ∗

υH − υL + β

2
, (12)

which is positive by Assumption 1. There is no effect on the welfare of the low types,

because their payoff is pinned down by UL(γ0), which is independent of T . In sum, a

longer deadline is beneficial for the ex ante welfare of the players in this region.17

Finally, let us consider Region I where T ∈ [B(γ0), D∗(γ0)), and Region III where

T ∈ [B(γ0), D(γ0)) for γ0 < γ∗ or T ∈ [D∗(γ0),D(γ0)) for γ0 ≥ γ∗. As in Region II, the

equilibrium play of the low types in I or III consists of both a concession phase and a

persistence phase. However, unlike in II, increasing the deadline in I or III lengthens the

17 Under the selection of the continuation equilibrium given in Proposition 2, the same analysis and
conclusion hold on the horizontal segment of the boundary B, with γ0 = γ∗ and T ≤ B(γ∗).

24



concession phase while shortening the persistence phase, with no change in equilibrium

play at the deadline (y(T ) = 0 in Region I or y(T ) = 1 in Region III). The welfare effect

on the low types is again nil, since their payoff is fixed at UL(γ0). The welfare effect on

the high types can be studied by solving the differential equation (5) (or equivalently, 6)

with appropriate boundary conditions obtained from the equilibrium deadline play of the

low types.

Take Region I for example. The game enters the persistence phase from the concession

phase at time S(T ; γ0). From the deadline play of the low types, the payoff to the high

types at t = S(T ; γ0) is

UH(S(T ; γ0)) =
1
2
(υH + υL + β)− δ(T − S(T ; γ0)).

Their payoff at the beginning of the game is

UH(γ0) = UH(0) = UH(S(T ; γ0))−
�

S(T ;γ0)

0
U̇H(t)dt,

where U̇H(t) is given by equation (5). Lengthening the deadline affects the welfare of the

high types by changing the boundary value UH(S(T ; γ0)) directly and by prolonging the

concession phase through increasing S(T ; γ0). The overall effect is

∂UH(γ0)
∂T

= −δ + x(S(T ; γ0))(υH + β − UH(S(T ; γ0)))
∂S(T ; γ0)

∂T
. (13)

The loss of a longer deadline is δ, while the gain is the increased length of the concession

phase times the flow rate of concession times the value of the resulting improvement in the

decision. The analysis for Region III is similar, except that the boundary value becomes

UH(S(T ; γ0)) = υH + β − δ(T − S(T ; γ0)).

The welfare effect on the high type is given by the same expression (13).

Crucial to our characterization of the optimal deadline, we establish in the proof of

Proposition 4 below that the welfare effect (13) is positive in Region I but negative in

Region III. The intuition behind this result is quite simple. In Region I, the game will

result in a “deadlock” if it survives past the phase-switch time. Because the low types will
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persist at the deadline, the quality of the decision is bad for the high types. Therefore a

longer concession phase that allows more information aggregation in the beginning of the

negotiation is highly valuable. In Region III, on the other hand, the game only leads to a

“stalling” period past the phase-switch time. Since the low types will ultimately concede

at the deadline, the high types will eventually obtain their favorite decision. Therefore

a longer concession phase in the beginning is of less value. This explains the contrasting

welfare effects for these two cases.

Figure 1 illustrates the welfare effects of a marginal extension of the deadline. A “+”

sign indicates that a longer deadline improves the welfare of the high types, with no effect

on the low types; a “−” sign indicates a negative welfare effect on the high types, together

with either a negative effect (in Regions V and VI) or no effect (in Region III) on the low

types; and a “=” sign indicates that the welfare effect is nil for both types. For γ0 ≥ γ∗,

we can see that as the deadline T increases, the welfare effect is first negative in Region V,

then positive in Regions I and II, and finally turning negative in Region III. Therefore the

optimal deadline must be either zero, or D∗(γ0), which is the boundary between Regions

II and III. For γ0 < γ∗, we see that the welfare effect is negative so long as the deadline is

binding, and is nil when the deadline is too long. Therefore the optimal deadline must be

T = 0. To state our main result on the optimal deadline, let

UT (γ0) =
1

2− γ0
UT

L
(γ0) +

1− γ0

2− γ0
UT

H
(γ0) (14)

denote the ex ante welfare of a player before he knows his type from the equilibrium under

deadline T , where UT

H
and UT

L
are the corresponding payoffs for the high types and the

low types derived from Proposition 2.

Proposition 4. There exists a γ ∈ (γ∗, 1) such that the length of the deadline T that

maximizes UT (γ0) is D∗(γ0) if γ0 ∈ (γ∗, γ), and is 0 otherwise.

The proof of this proposition involves showing that the welfare effect (13) is positive in

Region I and negative in Region III. Together with the result that the welfare effect (12)

is positive in Region II, we establish that the local maxima of UT (γ0) are at T = 0 and

T = D∗(γ0) when γ > γ∗. The remainder of the proof consists of comparing the values of

UT (γ0) at the two local maxima. The details are in Appendix A.
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Proposition 4 shows that the optimal deadline is zero when γ0 is either sufficiently

small or sufficiently large. When γ0 ≤ γ∗, the equilibrium in the no-delay game is efficient,

so that allowing the players to negotiate in a continuous-time game will only introduce

unnecessary delay. At the other end, when γ0 is sufficiently close to one, under a sufficiently

long deadline the low types concede at a low rate and revise their belief slowly. Although

the welfare effect of the deadline is locally positive, making the decision immediately by

flipping a coin is even better from the ex ante perspective because the long delay is avoided

in the first place.

For intermediate levels of γ0, Proposition 4 shows that the optimal deadline is both

finite and not arbitrarily close to zero. These two properties follow from the characteri-

zation of the optimal deadline by the condition that the remaining time for negotiation

is B(γ∗) when the belief of the low types drops to γ∗ after an unsuccessful concession

phase. Alternatively, since the low types in equilibrium concede with probability one if

and only if the stopping belief is γ∗ and the time remaining to the deadline is B(γ∗), or the

stopping belief is strictly lower than γ∗, the optimal deadline for the intermediate levels

of initial belief γ0 is such that the concession phase is the shortest, and correspondingly

the persistence phase is longest, for there to be efficient information aggregation at the

deadline. Thus, the optimal deadline is finite for γ0 ∈ (γ∗, γ), not because too long a

deadline eventually becomes non-binding with no welfare effect, but because conditional

on achieving efficient information aggregation at the deadline, the optimal deadline min-

imizes the length of the concession phase. That it is not arbitrarily close to zero implies

that there are discontinuities in the optimal deadline, both at γ0 = γ∗ and at γ0 = γ.

These discontinuities are not a consequence of the equilibrium payoff discontinuity in the

no-delay game.18 Rather, they are due to the deadline effect: for deadlines sufficiently

short, the low types will simply persist from the start all through the deadline, which

means that the welfare effect is always negative for short deadlines. Put differently, when

positive the optimal deadline cannot be too short because it has to allow a sufficiently long

18 In Section 5.2, where we modify the non-delay game to eliminate the payoff discontinuity, the optimal
deadline remains discontinuous.
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delay to give incentives for the low types to change their deadline behavior and achieve

efficient information aggregation.

Using the definition of D∗ in equation (11), we can obtain an explicit formula for the

optimal deadline when it is positive:

D∗(γ0) =
β

δ

�γ∗
2

+ ln
1− γ∗
1− γ0

�
.

The above formula immediately reveals that the optimal deadline, when positive, is an

increasing function of γ0. This makes sense, because starting from a higher initial belief γ0

it takes a longer time for the revised belief to reach γ∗. It is also straightforward to verify

using the formula that the optimal deadline is longer the lower is the flow delay cost δ, the

smaller is the common value difference υH − υL, or the greater is the low type’s private

benefit β. All these factors make the low types less willing to concede, therefore requiring

a longer negotiation to achieve efficient information aggregation.

5. Extensions

In setting up the model we have abstracted from any detail in the deadline implementa-

tion to focus on the welfare effect of the deadline. In this section we briefly present two

extensions of the model, both of which add greater detail and some degree of realism.

However, this is not the main objective of these two extensions. Rather, we use them to

gain more insight about the source of the welfare effect of the deadline, and to demonstrate

its robustness.

5.1. Stochastic deadlines

Our analysis so far is confined to the case of pre-committed deterministic deadlines. We

now study the repeated proposal game with exogenous but stochastic breakdowns, inter-

preted as stochastic deadlines. Let � > 0 be the constant rate of exogenous exit, so that

upon reaching time t, the probability that the game ends exogenously in the next time

interval dt is �dt. In this event, we assume that the decision is made by a fair coin flip. For

simplicity we assume that T =∞. A smaller value of � corresponds to a longer stochastic
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deadline, with � =∞ corresponding to the no-delay game analyzed in Section 2, and � = 0

equivalent to the no deadline game analyzed in Section 3.

Following the same steps in deriving the differential equation for γ(t) in the case of

� = 0, we have

− γ̇(t)
1− γ(t)

=
δ

β

α− γ(t)
α− γ∗

, (15)

where we have defined

α ≡ γ∗ + (1− γ∗)
2δ

β�
.

The derivation of the above differential equation is in the proof of Proposition B1 in

Appendix B. There are two cases to consider.

In the first case, γ0 < min{1, α}, and the differential equation (15) gives the belief

evolution of an equilibrium in which the high types always persist and the low types with

belief γ concede with a flow rate �(α − γ)/(2(1 − γ∗)γ).19 In this case, the exogenous

exit rate � is sufficiently small, or equivalently the stochastic deadline is sufficiently long,

relative to the initial belief γ0 of the low types. Qualitatively, this case is similar to the

no-deadline game of Section 3, or the non-binding deadline case of Section 4.

In the second case, with γ0 ∈ [min{1, α}, 1), in equilibrium the low types persist

with probability one at any time t just as the high types, with the game ending by an

exogenous exit. This case occurs when the exit rate � is great and the initial belief γ0 is

high. Since flipping a coin gives a higher payoff to the low types than than UL(γ0), and

since the expected wait for the stochastic exit to occur is short when � is large, they have

no incentive to deviate to conceding. This case is qualitatively similar to the short deadline

case in Section 4.

We are interested in the effect of the stochastic exit rate � on players’ welfare. The

question we want to answer is whether in a game with no deterministic deadline, exogenous

stochastic exit can be used to improve the ex ante welfare of the players in a way similar

to the optimal finite deadline analyzed in Section 4. Since the equilibrium in the no-delay

19 If � ≤ 2δ/β, this is the only possible case. Note that α approaches infinity as � approaches 0, in
which case (15) reduces to (4) for the no-deadline case.
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game (� = ∞, or equivalently T = 0) is efficient for any initial belief γ0 below γ∗, we are

only interested in the question of the optimal exogenous exit rate for γ0 > γ∗.

For the first case of γ0 < min{1,α}, the payoff function for the low types UL(γ0) is

identical to UL(γ0) given by in (3), and thus does not depend on �. This is because a low

type conceding with a positive rate is indifferent between persisting and conceding, and

his payoff from conceding is computed with both the opposing low type conceding and the

exogenous exit occurring at the instant with probability zero. For the high types, we show

in the proof of Proposition B2 in Appendix B that the payoff function UH(γ0) is decreasing

in � so long as γ0 > γ∗. The intuition behind this result is that an increase in the exogenous

exit rate directly reduces the probability that the high types receive their first best payoffs,

which occurs only when the low types concede. Although an increase in � generally has

ambiguous effects on the equilibrium belief evolution and hence the equilibrium flow rate

of concession by the low types, the negative direct effect dominates. The welfare effect of

an increase in � is negative in this case.

In the second case of γ0 ∈ [min{1,α}, 1), both UH(γ0) and UL(γ0) are increasing in �,

because a greater exogenous rate of exit reduces the expected duration of the equilibrium

play without affecting the decision, which is always a coin flip. Therefore the welfare effect

of an increase in � is positive.

Thus, for any initial belief γ0 > γ∗, as the exogenous exit rate � increases, starting

from � = 0 and α arbitrarily large, the welfare effect is negative for all � such that α > γ0,

and then positive for all greater �. It follows that the optimal exogenous exit rate is either

zero, which makes the game equivalent to the no-deadline game of T = ∞, or infinity,

which is equivalent to ending the game by flipping a coin as in the equilibrium of the

no-delay game of T = 0. In either case, we conclude that stochastic deadlines cannot be

used to improve the ex ante welfare of the players.

The failure of stochastic deadlines illustrates the crucial role of the deadline play

in improving the ex ante welfare of the players. Since the exogenous exit motivates the

low types to either always concede with a positive flow rate, or always persist, stochastic

deadlines cannot generate the kind of deadline effect under a finite deadline where the

equilibrium play of the low types transits from an unsuccessful concession phase to a
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persistence phase when the time-to-deadline and the belief jointly reach some critical time

horizon. The absence of such deadline effect under stochastic deadlines is the reason for

its ineffectiveness in improving the ex ante welfare of the players.

5.2. Deadline penalties

A notable feature of the no-delay game with T = 0 in our model is that the equilibrium

behavior of the low types, as well as the payoffs of both the low and high types, change

discontinuously as γ increases from below γ∗ to above. Corresponding to this discontinuity,

there is a continuum of equilibria at γ = γ∗ when T = 0. This particular feature is not

critical for our results. We demonstrate this robustness by modifying the model of Section

2 and introducing an additional payoff loss λ > 0 for the two players when they fail to

reach an agreement by the end of the deadline. We assume that λ ≤ β/2.20

The deadline penalty eliminates the payoff discontinuity and the multiplicity of equilib-

ria at γ∗ in the no-delay game, and redefines the boundary in the T -γ space that separates

the concession and persistence phases. Define

γ∗ ≡
υH − υL − β + 2λ

υH − υL + 4λ
,

and

γ∗ ≡
υH − υL − β + 2λ

υH − υL

.

There is now a unique equilibrium in the no-delay game (T = 0) for any belief γ. The high

types always persist. The probability that the low types concede is zero for any γ ≥ γ∗,

one for γ ≤ γ∗, and given by

Y (γ) =
υH − υL − β + 2λ− (υH − υL)γ

4λγ
(16)

for γ ∈ (γ∗, γ∗). The new boundary B(γ) is continuous, determined by the indifference

condition of the low types between an immediate concession and the deadline play

UL(γ) = −δB(γ) + U0
L
(γ),

20 This assumption says that if it is known to be the disagreement state the low types still prefer
the disagreement outcome of flipping a coin and paying the penalty λ to conceding to the other side and
avoiding the penalty.
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where UL(γ) remains the same as before and is given by (3), and U0
L
(γ) is the unique con-

tinuation payoff in the no-delay game. The new boundary is shown as the thick piecewise

linear graph in Figure 2. The main difference is that the horizontal segment corresponding

to γ∗ in Figure 1 is replaced by the downward sloping segment between γ∗ and γ∗ in Figure

2 when λ > 0.

Both the equilibrium characterization and the welfare analysis are quite similar to

those for the case λ = 0, as can be seen in Figure 2 with two of the dotted curves indexed

by λ. They are formally stated as Propositions C1 and C2 and proved in Appendix C.

Here, we highlight the main difference that arises in this extension, which is the welfare

analysis of the deadline in Region II in Figure 2. Let S(T ; γ0) represent the phase-switch

time when the updated belief hits the downward-sloping segment of the boundary B. The

payoff UH(S(T ; γ0)) to the high types at S(T ; γ0) is:

−δ(T−S(T ; γ0))+Y (g(S(T ; γ0); γ0))(υH+β)+
�
1−Y (g(S(T ; γ0); γ0))

��υH + υL + β

2
−λ

�
.

This is the boundary condition that determines the equilibrium payoff to the high types

through the differential equation (5). Using the same argument as in the case without
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deadline penalty, we can decompose the welfare effect of the deadline ∂UH(γ0)/∂T in

three terms as follows:

−δ + Y �(g(S; γ0))ġ(S; γ0)
�υH − υL + β

2
+ λ

�∂S

∂T
+ x(S)(υH + β − UH(S))

∂S

∂T
. (17)

Lengthening the deadline prolongs the concession phase (∂S/∂T > 0). The loss is the

additional delay, represented by the first term above, but there are two gains, represented

by the second and third terms. The second term results because a prolonged concession

phase means that the updated belief is lower when it hits the boundary (ġ < 0), and thus

the low types types concede with a higher probability at the deadline (Y � < 0 for g(S; γ0)

between γ∗ and γ∗), reducing the chance of making the wrong decision and incurring the

penalty. This term generalizes the second expression in (12) for Region II in the case of

λ = 0. The third term is proportional to the flow rate of concession x(S) by the low types

times the relative gain to the high types of reaching an agreement during the concession

phase. This term takes the form as in (13) for Regions I and III in the case of λ = 0, but is

absent from (12) because the horizontal segment in Figure 1 means that ∂S/∂T = 0 when

λ = 0 in Region II. In spite of the differences, in the proof of Proposition C2 in Appendix

C we show that the overall effect (17) is positive, as in Region II of Figure 1.

As in Section 4 where λ = 0, the optimal deadline is 0 for γ0 ≤ γ∗, and is either

0 or D∗(γ0) for γ0 > γ∗, where D∗(γ0) is such that when the belief of the low types as

determined by g(t; γ0) reaches γ∗ the time remaining is B(γ∗). That is,

g(D∗(γ0)−B(γ∗); γ0) = γ∗.

In the proof of Proposition C2 in Appendix C we compare the ex ante welfare at these

two local maxima, and show that there exists an intermediate range of beliefs γ0 above

γ∗ for which the optimal deadline is D∗(γ0). Thus, the optimal deadline, when positive,

is still characterized by the shortest concession phase that achieves efficient information

aggregation at the deadline. The main properties of the optimal deadline established for

the case of λ = 0—that it is finite, is not arbitrarily short, and is increasing in the degree

of conflict—are all robust to the introduction of the deadline penalty.
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6. Concluding Remarks

Damiano, Li and Suen (2009) use a discrete time model with more restrictive preference

assumptions to show that costly delay can improve strategic information aggregation and

hence ex ante welfare in a variety of environments with regard to deadlines. However,

the discrete time framework is not suitable for studying the issue of optimal deadlines in

strategic information aggregation, because an explicit characterization of equilibrium play

is difficult to obtain.

In our model the positive welfare effects of extending the deadline are directly related

to the deadline behavior of the low types stopping the concessions at some point and then

conceding with a positive probability upon reaching the deadline. A longer deadline is

beneficial for the high types even though the low types persist for a longer period of time

during the deadline play, because the latter concede with a greater probability when the

deadline is reached. We have argued that the failure in inducing this deadline behavior is

the reason that stochastic deadlines, or exogenous negotiation breakdowns, are ineffective

in raising ex ante welfare. However, an implicit assumption we have made in modeling

stochastic deadlines is that exogenous breakdowns occur at a constant flow rate. We have

not investigated either time-varying flow rates, or atoms in the flow rate. The latter case

is perhaps more natural way of modeling stochastic deadlines, and is likely to generate

some deadline behavior and positive welfare effects of increasing the breakdown rate. A

related point is that we have assumed throughout that the two parties incur payoff losses

from delay at a constant flow rate. It is possible that delay cost exhibits atoms in the flow

rate that correspond to temporary suspensions of the negotiation process. We conjecture

such atoms to generate some kind of deadline behavior and positive welfare effects.

In our framework of negotiation with a finite deadline, we have shown that there

is a boundary such that there is a switch from a flow rate concession to full persistence

by the low types. Modifications to the no-delay game change the equilibrium play only

through changing the shape of the boundary. Although we have chosen the most natural

no-delay game in our setup, it would be interesting to decouple the no-delay game and

the no-deadline game by considering the no-delay payoffs in other reduced forms. Doing
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so may provide more general insights about the deadline effects and the optimal deadlines

than given in the present model.

Our repeated proposal game is symmetric, and we have shown that there is a unique

equilibrium and it is symmetric. Games with asymmetric preferences and delay costs

are worth future research because asymmetry adds an interesting element to equilibrium

dynamics of information aggregation. The restriction to equilibria in which the high types

always persist is natural in our setup because they know what the mutually preferred

choice is. Our Assumption 1, which implies that the payoff loss from making the wrong

choice is greater for the high types than the payoff loss from conceding in the disagreement

state for the low types, is sufficient for us to focus on equilibrium play of the low types

and turn to the high types only for welfare analysis. In a more general setup, we may

have one type better but not perfectly informed about the mutually preferred choice than

other types. This would be more challenging as there is no longer the dichotomy between

strategic analysis and welfare analysis, but the present paper is a starting point.

Our result that the optimal deadline is positive and increasing for intermediate levels of

initial conflicts hinges on two implicit assumptions about the game that may be questioned

in practice. First, the two parties in the joint decision situation are assumed to be able

to commit to a precise deadline at the start of the negotiation process. According to our

characterization of equilibrium play, before the process reaches the critical point when the

parties are supposed to become inactive until the deadline arrives, they have no incentive

to renegotiate the deadline. However, as soon as the critical point is reached, they would

want to jump to the end-game play immediately. Of course if such renegotiation of the

deadline is anticipated the equilibrium play before this critical point would be changed. It

is potentially interesting to formalize this commitment issue and reexamine the optimal

deadline. The other implicit assumption we have made is that the initial belief of the low

types is common knowledge between the two parties when setting the deadline. We hasten

to emphasize that our result that extending the deadline can have positive welfare effects

is robust to slight perturbations to the initial belief of the low types. However, a perhaps

more interesting issue is whether the two parties may find some way to communicate

their knowledge about the initial degrees of conflict before jointly setting the deadline for

negotiation. Such communication raises strategic issues that are worth further research.
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Appendix A: Proofs

Proof of Lemma 1.

For all time interval [t, t + dt) in [t1, t2), a low type is indifferent between conceding, with

the payoff UL(t) given in (2), and persisting. Therefore,

UL(t) = γ(t)x(t)dt (υL + β) +
�
γ(t)(1− x(t)dt) + (1− γ(t))

�
(−δdt + UL(t + dt)).

Subtracting UL(t + dt) from both sides of the equation, dividing by dt, and taking the

limit as dt goes to zero, we have a differential equation for the value function UL(t). Using

equation (2) for the value function, we can transform this differential equation for UL(t)

into a differential equation for γ(t), given by

γ̇(t) = γ(t)x(t)
�

γ(t)− υH − υL − β

υH − υL

�
− δ

υH − υL

.

By Bayes’ rule, given the low type opponent is using the strategy represented by x(t), the

updated belief after persisting for the time interval [t, t + dt) is

γ(t + dt) =
γ(t)(1− x(t)dt)

γ(t)(1− x(t)dt) + (1− γ(t))
.

As dt goes to zero, the updating formula can be written as:

γ̇(t) = −γ(t)(1− γ(t))x(t).

The two equations for γ̇(t) and x(t) reduce to (4). Using (4) and Bayes’ rule, we also get

x(t) =
1

γ(t)
δ

β
.

Proof of Proposition 1.

It suffices to show that it is optimal for the high types to always persist. This is clearly

the case for t ≥ D(γ0)), as the continuation payoff for the high types is υH + β when the

belief of the low types becomes zero. Using UH(0) = υH + β as the boundary condition

for the differential equation (6) and solving it, we have

UH(γ) = υH + β − β

�
1 +

1− γ

γ
ln(1− γ)

�
.
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The above gives the equilibrium payoff of the high types for any t < D(γ0). Since γ > 0, it

is immediate from the solution that this is greater than υH + β− β, which by Assumption

1 is greater than υL. Thus it is optimal for the high types to persist for any t < D(γ0).

Proof of Proposition 2.

Using the expressions (8) and (9), we can easily verify that B(γ) ≤ D(γ), with equality if

and only if γ = 0. Thus, for T and γ0 such that T < D(γ0), there is a unique phase-switch

time S(T ; γ0) given by (10). Further, S(T ; γ0) > 0 if and only if T > B(γ0). Finally, for

T and γ0 such that T ∈ (B(γ0),D(γ0)), by construction we have

UL(g(S(T ; γ0); γ0)) = U0
L
(g(S(T ; γ0); γ0))− δB(g(S(T ; γ0); γ0)),

so that the equilibrium payoff of the low types is continuous at t = S(T ; γ0). We discuss

three cases separately.

Case (i): T ≤ B(γ0). The construction of B implies that it is optimal for the low types to

persist for all t < T and then concede with probability y at t = T , with y = 1 if γ0 < γ∗,

y = 2δT/(βγ∗) if γ0 = γ∗, and y = 0 if γ0 > γ∗. For the high types, at any t ≤ T ,

persisting all through the deadline yields

y(υH + β) + (1− y)
υH + υL + β

2
− δ(T − t).

Conceding at any t < T yields υL, which by Assumption 1 is smaller than the above

because

T − t < B(1) =
β

2δ
.

Conceding at t = T cannot be optimal either because it is not part of any equilibrium of

the no-delay game.

Case (ii): T ∈ (B(γ0),D(γ0)). Case (i) already establishes that there is no incentive for

any player to deviate at any t ≥ S(T ; γ0). Since the equilibrium payoff of the low types is

continuous at t = S(T ; γ0), there is no incentive for them to deviate at any t < S(T ; γ0)

either. For the high types, at any t < S(T ; γ0) and corresponding belief γ = g(t; γ0) of the

low types, the equilibrium payoff UH(γ) is given by the following solution to the differential

equation (6):

UH(γ) = υH + β − β
1− γ

γ
ln(1− γ) +

1
γ

�
(1− γ)(C + υH + β)− β

�
,
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where C is a constant determined by the boundary condition:

UH(g(S(T ; γ0); γ0)) = y(υH + β) + (1− y)
υH + υL + β

2
− δ(T − S(T ; γ0)).

We already know from case (i) that UH(g(S(T ; γ0); γ0) ≥ υL. For any γ > g(S(T ; γ0); γ0),

we have UH(γ) ≥ υL if

υH − υL + β − β

1− γ
− β ln(1− γ) + C ≥ −υL,

which is true because the left-hand-side is increasing in γ by Assumption 1. Thus, it is

optimal for the high types to persist for all t < S(T ; γ0).

Case (iii): T ≥ D(γ0). The strategy and the belief given in the proposition form an

equilibrium identical to the one in Proposition 1.

Proof of Proposition 3.

We first establish a series of claims. The proposition follows immediately after Claim 4

below.

Claim 1. In any equilibrium where the high types always persist, y(t) = 0 for all t ∈ (0, T ).

Proof. First, we show that y(t) < 1 for both low types at any time t < T . Suppose there

is an equilibrium where a low type concedes for sure at some t < T . Then, for any η > 0,

his low type opponent must concede with probability one before t + η. This is because,

if the game continues past t, the opponent believes that it is the agreement state with

probability one, and thus conceding immediately is optimal. Then, for η sufficiently small,

persisting in the interval [t, t+η) and then conceding at t+η yields a strictly larger payoff

than conceding with probability one at t for the initial player.

Next, we show that for any t < T it cannot be the case that both low types concede

with strictly positive probabilities. If γ(t) is the belief of a low type upon reaching t, his

equilibrium payoff is

γ(t)y(t)ur + γ(t)(1− y(t))υL + (1− γ(t))υH ,

where y(t) is the probability that the opponent concedes at t and ur the player’s payoff

in the continuation equilibrium after a reverse disagreement. For any small and positive
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η, the payoff to the player from persisting in the interval [t, t + η) and then conceding at

t + η, is at least as large as

γ(t)y(t)(υL + β) + γ(t)(1− y(t))υL + (1− γ(t))υH − ηδ.

Because the sum of the two players’ payoffs in the continuation game after a reverse

disagreement cannot exceed 2υL + β, for η sufficiently small at least one of the two low

types has a profitable deviation.

Suppose now that one low type concedes with positive probability at some t ∈ (0, T ).

His equilibrium payoff upon reaching t is UL(γ(t)). Further, an argument similar to the

above can be used to establish that for all η sufficiently small, his low type opponent must

persist in the interval of time [t − η, t]. This implies that the player’s belief γ does not

change during the same interval. Then, conceding with probability one at t−η is uniquely

optimal because the player gets the same payoff from the decision but with a smaller delay

cost. This is a contradiction because we have shown that conceding with probability one

at any time but the deadline cannot be part of equilibrium strategies.

Claim 2. If in equilibrium the flow concession rate for one low type is x(t) = 0 for all t

in an open interval (t1, t2), then the same is true for the other low type. Further, x(t) = 0

for all t ∈ (t1, T ).

Proof. For the first part of the claim, suppose x(t) = 0 for a low type in an interval

(t1, t2). Then, his low type opponent’s belief does not change over the same period. By the

same argument as in the proof of Claim 1, if the opponent’s equilibrium strategy is such

that x̃(t�) > 0 for some t� ∈ (t1, t2), it must also be the case that ỹ(t) = 1 for all t ∈ (t1, t�),

a contradiction to Claim 1. For the second part of the claim, the same argument as above

implies that if t� = inft≥t2{t : x(t) > 0} < T , then the equilibrium strategy of this low

type must prescribe that y(t) = 1 for all t ∈ (t1, t�), again a contradiction.

Claim 3. All equilibria where the high types always persist are symmetric.

Proof. First, we show that in any equilibrium if t� ≡ inf{t : x(t) = 0} > 0, then the

beliefs of the low types upon reaching t� are identical. By Claim 2, both low types stop

conceding at the same time t� and persist until the deadline is reached. Thus, the belief of
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each low type upon reaching the deadline is the same as his belief upon reaching t�. Since

t� is interior, Claim 1 implies that at t� both low types are indifferent between conceding

and persisting until the deadline and then playing the equilibrium strategy in the no-delay

game associated with their own beliefs at t�. Suppose that upon reaching t�, the two low

types hold beliefs γ� and γ��, and both are above γ∗. If B is the time left to the deadline at

t� the indifference conditions of the two low types can be satisfied simultaneously γ� = γ��.

If γ� = γ�� = γ∗, for the two indifference conditions to hold for the same B, the equilibrium

strategy upon reaching the deadline must also be symmetric. The other cases are similar.

Claim 2 above has already established the symmetry of the equilibrium strategy for

the low types when t� = 0. If instead t� > 0, the same claim also implies that both low

types concede at a strictly positive flow rate in the interval (0, t�). Since the belief upon

reaching t� is the same in equilibrium for the two low types, the uniqueness of the solution

to the differential equation for the equilibrium evolution of the belief implies that both the

beliefs and the flow rate of concession are identical for the two players for any t ∈ (0, t�).

Since the initial belief γ0 is identical for the two players, neither player can concede with a

positive probability at t = 0 either, thus the equilibrium strategies are symmetric for all t.

Claim 4. For any initial belief γ0 of the low types, equation (9) gives the unique value of

B(γ0) such that in any equilibrium x(0) = 0 if T < B(γ0) and x(0) > 0 if T > B(γ0).

Proof. Fix any initial belief γ0. Suppose that in some equilibrium x(0) = 0 for some

deadline T > B(γ0). By Claim 2, we have x(t) = 0 for all t ∈ [0, T ). The payoff to the low

types in this posited equilibrium is then −T δ + U0
L
(γ0) where U0

L
is the payoff function

of the no-delay game (with the best equilibrium payoff corresponding to the low types

conceding with probability one in the case of γ0 = γ∗). By the construction of B(γ0), this

payoff is strictly less than the payoff from conceding immediately at t = 0, a contradiction.

Now, suppose that in some equilibrium x(0) > 0 for some deadline T < B(γ0). The

expected payoff to the low types from this posited equilibrium is equal to the payoff from

conceding immediately, which is UL(γ0). Consider the following deviation strategy for

a low type: persist until the deadline, and then play the unique equilibrium strategy in

the no-delay game corresponding to γ0 if γ0 �= γ∗ and concede with probability one if

γ0 = γ∗. For γ0 �= γ∗, since the payoff to the low type increases whenever the low type
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opponent concedes, and in the no-delay game the equilibrium probability of concession is

decreasing in the belief of the low types, the payoff from this deviation is at least as large

as when the opposing low type follows the same deviation strategy. The same is true for

γ0 = γ∗, because if the low type opponent initially concedes with a positive flow rate for

any arbitrarily small interval of time, his belief falls below γ∗ in the posited equilibrium. It

follows then from the construction of B that this is a profitable deviation, a contradiction.

Proof of Proposition 4.

First, we show that the welfare effect (13) is positive in Region I of Figure 1. The phase-

switch time S is defined by the indifference condition (we write S instead of S(T ; γ0) for

notational brevity):

δ(T − S) = U0
L
(g(S; γ0))− UL(g(S; γ0)) =

g(S; γ0)− γ∗
1− γ∗

β

2
.

Taking derivative respect to T , and using the fact that ġ = −(1− g)δ/β, we obtain:

∂S

∂T
=

2(1− γ∗)
1− 2γ∗ + g(S; γ0)

.

Furthermore, by Assumption 1,

υH + β − UH(S) =
υH − υL + β

2
+ δ(T − S) >

β

2

�
1 +

g(S; γ0)− γ∗
1− γ∗

�
.

Finally, since x(S) = δ/(βg(S; γ0)), we have

x(S)(υH + β − UH(S))
∂S

∂T
>

δ

g(S; γ0)
> δ.

Next, we show that the welfare effect (13) is negative in Region III. The phase-switch

time S is defined by:

δ(T − S) = g(S; γ0)
β

2
.

Take derivative respect to T to get ∂S/∂T = 2/(1 + g(S; γ0)). Furthermore,

υH + β − UH(S) = δ(T − S) = g(S; γ0)
β

2
.

Therefore,

x(S)(υH + β − UH(S))
∂S

∂T
=

δ

1 + g(S; γ0)
< δ.
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The final part of the proof is to compare the value of UT (γ0) at the two local maxima

T = 0 and T = D∗(γ0) for γ0 > γ∗. The ex ante welfare U0(γ0) for T = 0 is given

by (14). Let U∗
L
(γ0) and U∗

H
(γ0) be the welfare of the low types and high types when

T = D∗(γ0), and let U∗ be the weighted average of the two as in (14). We have U∗
L
(γ0) =

γ0υL + (1 − γ0)υH as given by (3). Solving the differential equation (6) for the payoff to

the high types with the boundary condition UT

H
(γ∗) = υH + β − δB(γ∗), we obtain

U∗
H

(γ0) = υH + β − 1− γ0

γ0

�
ln

�1− γ0

1− γ∗

�
+

1
1− γ0

− 2− γ2
∗

2(1− γ∗)

�
β.

The difference in ex ante welfare U∗(γ0)− U0(γ0) is equal to ∆(γ0)/(2(2− γ0)), where

∆(γ0) = 2(1− γ0)(υH − υL)− γ0β −
2(1− γ0)2

γ0

�
ln

�1− γ0

1− γ∗

�
+

1
1− γ0

− 2− γ2
∗

2(1− γ∗)

�
β.

Take derivative of ∆ with respect to γ0 to obtain:

∆�(γ0) = −2(υH − υL)− 3β +
2(1− (γ0)2)

(γ0)2

�
ln

�1− γ0

1− γ∗

�
+

1
1− γ0

− 2− γ2
∗

2(1− γ∗)

�
β.

The limit of the last term as γ0 goes to one is equal to 4β. Further, it is increasing for all

γ0 > γ∗: the derivative has the same sign as

−1− (1 + γ0)2 − 2 ln
�1− γ0

1− γ∗

�
+

2− γ2
∗

1− γ∗
,

which is an increasing function of γ0; at γ0 = γ∗, this derivative is equal to γ3
∗/(1 − γ∗),

which is positive. Thus, ∆�(γ0) ≤ −2(υH − υL) + β, which is negative by Assumption

1. We have proved that ∆(γ0) = 0 implies ∆�(γ0) < 0 for all γ0 > γ∗. Note that

limγ0↓γ∗ ∆(γ∗) = (1 − γ∗)(υH − υL + β − γ∗β), which is positive by Assumption 1. Also,

limγ0→1 ∆(γ0) = −β < 0. It follows from the intermediate value theorem that there exists

a γ ∈ (γ∗, 1) such that ∆(γ) = 0. Moreover, the single-crossing property of ∆ implies that

such γ is unique, with U∗(γ0) > U0(γ0) if and only if γ0 ∈ (γ∗, γ).
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APPENDICES B AND C

(NOT INTENDED FOR PUBLICATION)

Appendix B. Stochastic Deadlines

Proposition B1. Suppose that T =∞ and � > 0. There exists a symmetric equilibrium

in which the high types always persist; the low types with belief γ concede with a flow

rate equal to �(α − γ)/(2(1 − γ∗)γ) if γ(t) ∈ (0,min{1,α}), concede with probability one

if γ = 0 and persist if γ ∈ [min{1,α}, 1); and the belief γ(t) of the low types solves (15)

with the initial value γ0 if γ0 < min{1,α}, and is equal to γ0 if γ0 ∈ [min{1,α}, 1).

Proof. First, we derive the differential equation (15) for the equilibrium belief evolution.

Note that the expected payoff of the low types from conceding is still given by (2). The

payoff from persisting becomes

γ(t)x(t)dt (υL + β) +
�
γ(t)(1− x(t)dt) + (1− γ(t))

�
(1− �dt)(−δdt + UL(t + dt))

+ �dt
�
(1− γ(t))

υH + υL + β

2
+ γ(t)(1− x(t)dt)

2υL + β

2

�
,

where x(t) denotes the flow rate of concession by the low types. Equating the two payoff

expressions and using the same Bayes’ rule as in the proof of Lemma 1 immediately give

us (15). The corresponding flow rate of concession is

x(t) =
�(α− γ(t))

2(1− γ∗)γ(t)
.

For the case of γ0 ∈ (0, min{1,α}), it suffices to verify that the equilibrium payoff of

the high types is at least as large as the payoff from deviating to conceding, which is equal

to υL regardless of �. The differential equation for the value function of the high types is

U �
H

(γ) = − (α− γ∗)β + (1− γ∗)(υH − υL + β)
(1− γ)(α− γ)

+
α− γ + 2(1− γ∗)γ

γ(1− γ)(α− γ)
(υH + β − UH(γ)),

with the boundary condition UH(0) = υH +β. The solution to this differential equation is

UH(γ) = υH + β −
�

1− 1− γ

γ

K(γ)
2(1− γ∗)

�
(α− γ∗)β + (1− γ∗)(υH − υL + β)

(α− γ∗) + (1− γ∗)
,
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where

K(γ) ≡ α− α

�
α(1− γ)
α− γ

�2�β/(2δ−�β)

.

Note that K(γ) > 0 for all γ ∈ (0,α), regardless of whether α is greater or less than one.

Since
(α− γ∗)β + (1− γ∗)(υH − υL + β)

(α− γ∗) + (1− γ∗)
≤ υH − υL + β,

it follows immediately from Assumption 1 that UH(γ) ≥ υ
L

for all γ.

For the case of γ0 ∈ [min{1,α}, 1), in equilibrium the game ends with exogenous exit,

with a terminal payoff of (υH + υL + β)/2 to the high types and

γ
2υL + β

2
+ (1− γ)

υH + υL + β

2

to the low types. Further, the exogenous exit time follows an exponential distribution with

parameter �, and hence the expected duration of the game is 1/�. Thus, the equilibrium

expected payoff loss from delay is δ/� for both the high and low types. If the low types

deviate to conceding, the expected payoff is

γβ + (1− γ)υH < γ
2υL + β

2
+ (1− γ)

υH + υL + β

2
− δ

�
,

because γ < α. For the high types, the expected payoff from concession is υL, which is

lower than the equilibrium payoff because υH − υL + β > 2δ/�, by Assumption 1 and by

the assumption that α < 1.

Proposition B2. Suppose that T = ∞. For any γ0 > γ∗, the optimal exogenous exit

rate is either zero or infinity.

Proof. It suffices to establish that UH(γ0) for the case γ0 < min{1, α} is decreasing in �

for γ0 > γ∗.

It is convenient to use the fact that limγ0→0 K(γ0) = 0 to write

K(γ0) =
�

γ0

0
k(γ) dγ,

where

k(γ) =
2(1− γ∗)
(1− γ)2

�
α(1− γ)
α− γ

�(2δ+�β)/(2δ−�β)

.
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The term K(γ0)(1− γ0)/γ0 is decreasing in γ0 because its derivative is

1− γ0

γ0
k(γ0)−

1
(γ0)2

K(γ0)

=− α

(γ0)2

�
1−

�
α(1− γ0)
α− γ0

�2�β/(2δ−�β) �
2(1− γ∗)γ0

α− γ0
+ 1

��

=− α

(γ0)2

�
γ0

0
2(1− γ∗)

�
α(1− γ)
α− γ

�2�β/(2δ−�β) γ((α− γ∗) + (1− γ∗))
(α− γ)2(1− γ)

dγ,

which is negative as α > γ∗. Now, since limγ0→0 K(γ0) = 0, and thus

lim
γ0→0

K(γ0)
γ0

= lim
γ0→0

k(γ0) = 2(1− γ∗),

we have
1− γ0

γ0

K(γ0)
2(1− γ∗)

< 1

for all γ0 > 0. Because the coefficient on K(γ0) in the UH(γ0) function is increasing in �,

a sufficient condition for UH(γ0) to be decreasing in � is that K(γ0) is increasing in α. A

sufficient condition for the latter is that ln k(γ0) is increasing in α, or

− ln
�

α(1− γ0)
α− γ0

�
+

(α− 1)γ0

α(1− γ0)
(α− γ∗) + (1− γ∗)

2(1− γ∗)
> 0.

Since the above is equal to zero at γ0 = 0, it is sufficient if its derivative with respect to

γ0 is strictly positive. This derivative is given by

�
α− 1
α− γ0

�2 �
1

1− γ0
− 1

2(1− γ∗)

�
.

Therefore, UH(γ0) decreases with � so long as γ0 > γ∗.

Appendix C. Deadline Penalties

Proposition C1. Suppose that T < ∞, and λ ∈ (0,β/2]. There is a symmetric equilib-

rium in which the high types always persist; the strategy of the low types at time t with any

belief γ is such that: (i) if t = T , concede with probability one if γ ≤ γ∗, with probability

zero if γ ≥ γ∗, and with probability Y (γ) if γ ∈ (γ∗, γ∗); (ii) if T − t ∈ (0, B(γ)], persist;
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and (iii) if T − t > B(γ), concede with a flow rate δ/(βγ) if γ > 0 and with probability

one if γ = 0.

Proof. For case (i), we show that there is a unique equilibrium in the game without delay

(T = 0). Fix a belief γ that it is the disagreement state for a low type. Suppose that the

opposing low type concedes with probability y. Then the difference between the low type’s

payoff from conceding and his payoff from persisting is

−γ
�β

2
− λ

�
+ (1− γ)

�υH − υL − β

2
+ λ

�
− 2γλy.

The above is strictly decreasing in y, and therefore there is a unique equilibrium for any γ,

given as follows. If γ ≤ γ∗, then the difference in payoffs is always non-negative, and thus

the unique equilibrium is y = 1; if γ ≥ γ∗, the difference in payoffs is always non-positive

and thus the unique equilibrium is y = 0; and if γ ∈ (γ∗, γ∗), the unique equilibrium is

y = Y (γ), where Y (γ) is given by (16).

For case (ii), the equilibrium payoff to the low types at any time t� ∈ [t, T ) from

persisting throughout the game is given by

γ
�
Ỹ (γ)(υL + β) + (1− Ỹ (γ))

�2υL + β

2
− λ

��
+ (1− γ)

�υH + υL + β

2
− λ

�
− δ(T − t�),

where

Ỹ (γ) =






1 if γ ≤ γ∗

Y (γ) if γ0 ∈ (γ∗, γ∗)

0 if γ ≥ γ∗.

It is straightforward to show that if t� = t and T − t = B(γ), the above is equal to UL(γ),

the deviation payoff to a low type from conceding at time t� given the equilibrium strategy

of the low type opponent. Thus, there is no incentive for the low types to deviate for any

time t� ∈ [t, T ). For the high types, at any t� ∈ [t, T ] the equilibrium payoff from persisting

is

Ỹ (γ)(υH + β) + (1− Ỹ (γ))
�υH + υL + β

2
− λ

�
− δ(T − t�).

The payoff from conceding right away is υL. It is optimal for the high types to persist if

Ỹ (γ)(υH − υL + β) + (1− Ỹ (γ))
�υH − υL + β

2
− λ

�
≥ δT.
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We have just argued that the low types weakly prefer persisting until the deadline followed

by conceding with probability Ỹ (γ) to conceding immediately. Since Ỹ (γ) > 0 for γ < γ∗,

the equilibrium condition of the low types implies that

γỸ (γ)
�2υL + β

2
− λ

�
+ γ(1− Ỹ (γ))υL + (1− γ)υH − δ(T − t) ≥ UL(γ),

or

γỸ (γ)
�β

2
− λ

�
≥ δ(T − t).

By Assumption 1 and the assumption that λ ≤ β/2, we have

Ỹ (γ)(υH −υL +β)+ (1− Ỹ (γ))
�υH − υL + β

2
−λ

�
>

υH − υL + β

2
−λ > γỸ (γ)

�β

2
−λ

�
,

and thus the equilibrium condition of the high types is satisfied. For the case of γ ≥ γ∗

we have Ỹ (γ) = 0, and the equilibrium condition of the low types is

γ
�2υL + β

2
− λ

�
+ (1− γ)

�υH + υL + β

2
− λ

�
− δ(T − t) ≥ γυL + (1− γ)υH ,

which implies

γ
�β

2
− λ

�
> δ(T − t).

Thus, the equilibrium condition of the high types is satisfied.

For case (iii), for any initial belief γ0, either T > D(γ0), in which case the proof is the

same as the case of no deadlines in Section 3, or otherwise on the equilibrium path there

is a unique time t = S(T ; γ0) satisfying

T − S(T ; γ0) = B(g(S(T ; γ0); γ0)).

By construction, the low types are indifferent between conceding and persisting for all

t ∈ [0, S(T ; γ0)), so there is no profitable deviation before t = S(T ; γ0). Further, by

construction, the equilibrium payoff to the low types at t = S(T ; γ0) is

UL(S(T ; γ0)) =g(S(T ; γ0); γ0)
�
Ỹ (γ0)(υL + β) + (1− Ỹ (γ0))

2υL + β

2
− λ

�

+ (1− g(S(T ; γ0); γ0))
�υH + υL + β

2
− λ

�
− δ(T − S(T ; γ0)).
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Thus, by the argument for cases (i) and (ii) above, there is no profitable deviation for the

low types after t = S(T ; γ0) either. For the high types, given the arguments for cases (i)

and (ii), it suffices to show that there is no profitable deviation before t = S(T ; γ0). The

equilibrium payoff function UH(γ) at any γ = g(t; γ0) for t < S(T ; γ0) is given by the

solution to the differential equation (6) with the boundary condition that

UH(g(S(T ; γ0); γ0)) =Ỹ (g(S(T ; γ0); γ0))(υH + β)− δ(T − S(T ; γ0))

+
�
1− Ỹ (g(S(T ; γ0); γ0))

��υH + υL + β

2
− λ

�
.

The claim that it is optimal for the high types to persist at all t < S(T ; γ0) follows from

identical arguments as in the proof of Proposition 2.

Proposition C2. Suppose that λ ∈ (0,β/2]. There exist thresholds γ and γ, with

γ∗ < γ < γ∗ < γ < 1, such that the optimal deadline for any initial belief γ0 is D∗(γ0) if

γ0 ∈ (γ, γ), and is zero otherwise.

Proof. We first verify that the welfare effects are positive in Regions I and B but negative

in Region III in Figure 2.

In Region II, the phase-switch time S is defined by the indifference condition for the

low types at the boundary B:

δ(T − S) = g(S; γ0)Y (g(S; γ0))
�β

2
− λ

�
.

Taking derivative with respect to T , and using the definition of Y in equation (16), we

obtain:
∂S

∂T
=

8λβ

8λβ + (1− g(S; γ0))(υH − υL)(β − 2λ)
.

Now, an explicit calculation of ∂UH(γ0)/∂T given in equation (17) yields:

∂UH(γ0)
∂T

=
δ

8λβg(S; γ0)

�
(β + 2λ)(υH − υL + β + 2λ)

+ (υH − υL)(β − 2λ)(γ∗ − g(S; γ0))
�∂S

∂T
− δ.

Since ∂S/∂T > 0, by Assumption 1 the above expression is greater than:

δ
(β + 2λ)2 + (υH − υL)(β − 2λ)(γ∗ − g(S; γ0))

g(S; γ0)
�
8λβ + (1− g(S; γ0))(υH − υL)(β − 2λ)

� − δ,

50



which is equal to δ/g(S; γ0)− δ > 0.

In Region I, the phase-switch time S is defined by the indifference condition:

δ(T − S) =
g(S; γ0)− γ∗

2(1− γ∗)
β − λ.

Take derivative respect to T to get

∂S

∂T
=

2(1− γ∗)
1− 2γ∗ + g(S; γ0)

.

Furthermore, by Assumption 1,

υH + β − UH(S) =
υH − υL + β

2
+ δ(T − S) + λ >

β

2
1− 2γ∗ + g(S; γ0)

1− γ∗
.

Finally, since x(S) = δ/(βg(S; γ0)), we have

∂UH(γ0)
∂T

= −δ + x(S)(υH + β − UH(S))
∂S

∂T
> 0.

In Region III, the phase-switch time S is defined by:

δ(T − S) = g(S; γ0)
�β

2
− λ

�
.

Take derivative respect to T to get

∂S

∂T
=

2(1− γ∗)
2(1− γ∗)− (1− g(S; γ0))(1− γ∗)

.

Furthermore,

υH + β − UH(S) = δ(T − S) =
g(S; γ0)

2
1− γ∗
1− γ∗

β.

Therefore,
∂UH(γ0)

∂T
= −δ + x(S)(υH + β − UH(S))

∂S

∂T

= −δ +
δ(1− γ∗)

2(1− γ∗)− (1− g(S; γ0))(1− γ∗)

≤ 2δ(γ∗ − γ∗)
2(1− γ∗)− (1− γ∗)

,

which is negative.

The remainder of the proof is to compare the value of ex ante welfare UL(γ0) at the

two local maxima of zero and D∗(γ0) for γ0 > γ∗.
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The equilibrium payoff functions for the high and low types in the no-delay game are

given by

U0
L
(γ0) =






1
2γ0(2υL + β − 2λ) + (1− γ0)υH if γ0 ∈ [0, γ∗),

γ0υL + (1− γ0)υH + 1
2γ0Y (γ0)(β − 2λ) if γ0 ∈ [γ∗, γ∗],

1
2γ0(2υL + β − 2λ) + 1

2 (1− γ0)(υH + υL + β − 2λ) if γ0 ∈ (γ∗, 1);

and

U0
H

(γ0) =






υH + β if γ0 ∈ [0, γ∗),

Y (γ0)(υH + β) + 1
2 (1− Y (γ0))(υH + υL + β − 2λ) if γ0 ∈ [γ∗, γ∗],

1
2 (υH + υL + β)− λ if γ0 ∈ (γ∗, 1).

Under the deadline T = D∗(γ0), the payoff to the low types is simply U∗
L
(γ0) = UL(γ0)

as in (3). To compute the payoff to the high types, we solve the differential equation (6)

with the boundary condition

UH(γ∗) = υH + β − δB(γ∗).

This gives the payoff to the high types when the deadline is T = D∗(γ0):

U∗
H

(γ0) =υH + β − 1− γ0

γ0

�
ln

� 1− γ0

1− γ∗

�
+

γ0 − γ∗
(1− γ0)(1− γ∗)

�
β

− 1− γ0

γ0

γ2
∗

1− γ∗

�β

2
− λ

�
.

The difference in ex ante welfare U∗
L
(γ0)− U0

L
(γ0) is

1
2− γ0

(U∗
L
(γ0)− U0

L
(γ0)) +

1− γ0

2− γ0
(U∗

H
(γ0)− U0

H
(γ0)) ≡

1
2(2− γ0)

∆(γ0).

Since Y (γ∗) = 1, we have

∆(γ∗) = −γ∗(β − 2λ)− γ∗(1− γ∗)(β − 2λ) < 0.

Since Y (γ∗) = 0, we have

∆(γ∗) = (1− γ∗)(υH − υL + β − 2λ)− 2(1− γ∗)2

γ∗

γ2
∗

1− γ∗
(β − 2λ)

− 2(1− γ∗)2

γ∗

�
ln

�1− γ∗
1− γ∗

�
+

γ∗ − γ∗
(1− γ∗)(1− γ∗)

�
β.
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Using Assumption 1, we can show that

∆(γ∗) ≥
1− γ∗
β + 2λ

�
(1− γ∗)(β − 2λ)2 + 8(1− γ∗)λβ

�
> 0.

Thus, there exists a γ ∈ (γ∗, γ∗) such that ∆(γ) = 0. Taking derivatives of ∆(γ0) with

respect to γ0 ∈ (γ∗, γ∗) and evaluating at γ using ∆(γ) = 0 yield

∆�(γ) =
γ∗(1− γ∗)
γ(γ∗ − γ∗)

(υH − υL + β + 2λ) +
γ∗(2γ − γ∗(1 + γ))
γ(1− γ)(γ∗ − γ∗)

(β − 2λ)− 2β

>
1− γ∗
γ∗ − γ∗

(υH − υL + β + 2λ) +
2γ∗ − γ∗(1 + γ∗)
(1− γ∗)(γ∗ − γ∗)

(β − 2λ)− 2β

>
(1− γ∗)γ∗
γ∗ − γ∗

(β + 2λ) +
2γ∗ − γ∗(1 + γ∗)
(1− γ∗)(γ∗ − γ∗)

(β − 2λ)− 2β,

where the first inequality follows because the first term in the expression is decreasing in

γ while the second term is increasing in γ, and the second inequality uses Assumption 1

and the assumption that λ ≤ β/2. The above can be shown to be equal to
�β

2
− λ

� �
υH − υL − β

λ

�
υH − υL − β

β + 2λ
+

3
2

�
+

β − 2λ

β + 2λ
+

β

λ
− 2

�
,

which is positive because λ ≤ β/2. As a result, γ is unique, with ∆(γ0) > 0 if γ0 ∈ (γ, γ∗),

and the opposite holding if γ0 ∈ (γ∗, γ).

At the other end, we have

lim
γ0→1

∆(γ0) = −(β − 2λ) < 0.

Thus, there exists a γ ∈ (γ∗, 1) such that ∆(γ) = 0. The derivative of ∆(γ0) with respect

to γ0 ∈ (γ∗, 1) is given by

∆�(γ0) =− 2(υH − υL + 2λ)− 3β +
(1− (γ0)2)γ2

∗
(γ0)2(1− γ∗)

(β − 2λ)

+
2(1− (γ0)2)

(γ0)2

�
ln

� 1− γ0

1− γ∗

�
+

γ0 − γ∗
(1− γ0)(1− γ∗)

�
β.

As in the case of λ = 0, the sum of the last two terms in the above expression is increasing

in γ0 and approaches 4β as γ0 approaches 1. Thus,

∆�(γ0) < −2(υH − υL + λ) + β < 0,

because λ ≤ β/2. It follows that γ is uniquely defined in (γ∗, 1), and ∆(γ0) > 0 for

γ0 ∈ (γ∗, γ) and the opposite holds for γ0 ∈ (γ, 1).
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