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Abstract

This paper studies all-pay auctions with resale opportunities within an independent-

private-value framework. Given the existence of a resale market, the primary players

will compete more aggressively over an indivisible prize. We characterize a symmetric

equilibrium for all-pay auctions with private values and resale and derive a revenue-

ranking result for all-pay auctions with and without resale opportunities. Depending

on the first-stage winner’s ability to extract surplus in the resale stage, the initial seller

may or may not benefit from excluding some players from the primary competition thus

creating a resale market.
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1 Introduction

This paper studies all-pay auctions with private values and resale opportunities. In contrast

to standard auctions where only winners are required to make payments, all-pay auctions

exhibit special characteristic of unconditional payment, that is, bidders always pay their bids

regardless winning or losing. All-pay auctions or equivalent models have been widely used

to model a variety of economic and social instances of conflict and competition such as

lobbying, contests and tournaments, political campaigns, patent races, and so on.1 In practice,

there are many instances a static all-pay auction model could not account for. Participants in

such instances often face aftermarket competitions.

Consider an all-pay auction followed by a resale mechanism. The motivating example is

R&D contests. Very often the winners of those contests do not consume the prize themselves;

instead, they would like to sell the prizes on the secondary market. Moreover, winners of

patent races usually sell the patents to others in order to pursue more profits. Forseeing the

resale opportunity certainly will change those first-stage competitors’ strategic behaviors. A

static all-pay auction model is not rich enough to study such issues, which leads us to consider

an all-pay auction with resale.

There could be many forms of the resale mechanism. It could be an auction, a fixed-price

selling mechanism or even a multi-lateral bargaining process, and so on. In this paper, we

study two formats of the resale mechanism: a second-price auction and an optimal auction as

Myerson (1981) characterizes. When the seller on the secondary market conducts a second-

price auction to resell the prize, her private value serves as a natural reserve price. In the case

of an optimal auction, the seller will optimally choose a reserve price in order to maximize

her expected surplus from resale. Depending on the exogenously-chosen resale mechanism,

the first-stage players behave differently. This is the main theme we will investigate in this

paper.

1See, for example, Baye et al. (1993), Krishna and Morgan (1997), and Moldovanu and Sela (2001).
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To control the information flow between these two stages, we assume that the winning

bid will be announced after the first-stage all-pay auction. The aftermarket buyers observe

this information, infer the winner’s private value, and compete over the prize either in a

second-price auction or in an optimal auction. Since the seller attaches a positive value

to the prize, she will not resell it unless she extracts a nonnegative surplus. Hence, if the

second-stage competition takes place through a second-price auction, all potential buyers

take the seller’s value as a reserve price. Given this, bidding his or her private valuation

remains a weakly dominant strategy in the second-price auction. Foreseeing this connection

between the expected resale price and the bids submitted in the first-stage all-pay auction,

the first-stage bidders have signalling incentives. Thus, their valuations will be endogenously

determined due to resale opportunities.2 On the contrary, if the second-stage competition

takes place through an optimal auction, the seller will optimally determine the reserve price

and make it publicly known to all aftermarket buyers. There is no signalling incentive since

the seller will optimally determine the reserve price based on her true valuation.

Given existence of a resale market, the potential gain makes the primary players compete

more aggressively over an indivisible prize. We characterize a symmetric equilibrium for

all-pay auctions with independent private values and resale. We derive a revenue-ranking

result for all-pay auctions with and without resale opportunities. If the resale is conducted

through a second-price auction, we obtain a revenue equivalent result: the expected revenue

to the initial seller remain the same whether there is market separation or not. If the resale

is conducted through an optimal auction, the initial seller never gains and may lose in terms

of expected revenue. Given those two resale mechanisms, the initial seller does not gain

anything in terms of expected revenue. However, depending on the first-stage winner’s ability

of extracting surplus in the resale stage, the initial seller may benefit from excluding some

players from the primary competition thus creating a resale market.

2Similar results could be found in Goeree (2003), Haile (2003) and Sui (2007).
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Krishna and Morgan (1997) study all-pay auctions using a general symmetric model.

They characterize equilibrium strategies for both first-price and second-price all-pay auc-

tions and derive a revenue ranking results. Sui (2007) extends Krishna and Morgan (1997)’s

general symmetric setting to incorporate resale possibilities into all-pay auctions. He char-

acterizes symmetric bidding equilibria for both first- and second-price all-pay auctions with

resale. Based on these equilibria, he compares the two formats from the perspective of a

revenue-maximizing seller.3

This paper is also related to the literature regarding auctions with resale. Bikhchandani

and Huang (1989) present a model with symmetric information applicable to treasury bill

auctions, where pure common values and a competitive resale market are assumed. Resale

takes place because most bidders in the first stage are speculators and bid for resale. They

characterize equilibrium bidding strategies for both discriminatory and uniform-price auc-

tions. Provided existence of symmetric equilibria, they show that uniform-price auctions

generate no less expected revenue than discriminatory auctions. Using a model with inde-

pendent private values, Haile (2003) studies auctions with resale under private uncertainties.

Resale takes place because of the discrepancy between the estimated values at the time of

bidding and the true values realized after the auction. He characterizes equilibrium bidding

strategies for first-price, second-price and English auctions followed by resale which could

be formalized as an optimal auction or an English auction. He argues that the option to resell

creates endogenous valuations and induces signaling incentives that may revert the revenue

results obtained in the literature that assumes no resale. In our model, resale takes place

because of new market entrants, which differs our paper from most of the literature.

In the following section, we present the main model and investigate two resale mecha-

nisms. Section 3 contains a detailed example to show our main results. Section 4 concludes.

3Moreover, Sui (2007) shows that the revenue ranking result derived in Krishna and Morgan (1997) remains
even if we introduce resale opportunities to all-pay auctions.
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2 The Model

The two-stage game proceeds as follows. In the first stage, N risk-neutral players compete

over an indivisible prize through an all-pay auction. Each first-stage player has independent

private value drawn from an identical distribution F with density f over support [0,ω]. The

player who submits the highest bid wins the auction, and all players pay their bids. In the

second stage, the winner could resell the prize through a resale mechanism. In this study,

we consider two kinds of resale mechanisms: a second-price auction or an optimal auction.

There are M potential buyers in the second stage and we assume that each second-stage buy-

ers has independent private value drawn from the same distribution F with the same support.

Moreover, we assume that the first-stage losing players do not enter the resale market, hence

there exists a market separation.4 As for the information flow between these two stages, we

assume that the winning bid will be announced after the first stage, hence the secondary play-

ers could use those announced winning bids to infer the first-stage winner’s private valuation

about the prize.

2.1 Second-price Resale Mechanism

We solve the game through backward induction. We start from the second stage. Suppose

there exists a monotonic increasing equilibrium bidding strategy β for the first-stage players.

If the announced winning bid is b̄, the second-stage buyers infer that the winning bidder’s

private valuation r = β−1(b̄). Hence, in the second stage, r will serve as the reserve price in

the second-price auction. Individual rationality implies that the first-stage winner will keep

the prize if no one bids higher than r.

4This is important to our results. If the losing bidders enter the secondary market, they may strategically
lose the first stage and then try to win the prize in the second stage. See Pagnozzi (2007).
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The expected payment of a buyer with value v ≥ r is given by

m(x,r) = rG(r)+
Z x

r
yg(y)dy (1)

where G is the distribution of y ≡ max j 6=1 x j with a density g. Here G(r) = F(r)M−1. Then

the ex ante expected payment of a buyer is now

E[m(x,r)] =
Z

ω

r
m(x,r) f (x)dx

= r(1−F(r))G(r)+
Z

ω

r
y(1−F(y))g(y)dy

Suppose the winner’s private value is x and bids as if her true value is r, the overall

expected payoff of the first-stage winner from resale is

Π0 = M×E[m(x,r)]+F(r)Mx (2)

Therefore, in the first stage, suppose all other bidders follow β, a bidder learns his private

value x, and submits b to maximize

H(β−1(b))Π0−b (3)

where H is the distribution of the highest private value among a first-stage bidder’s competi-

tors. Maximizing (3) over b, the resulting first-order condition yields:

β
′(x) = MF(x)M+N−2−MF(x)M+N−1

+ M(N−1)xF(x)M+N−3 f (x)− (N−1)(M−1)xF(x)M+N−2 f (x)

+ M(N−1)F(x)N−2 f (x)
Z

ω

x
y(1−F(y))g(y)dy

6



Given the boundary condition β(0) = 0, the symmetric equilibrium is

β(x) =
Z x

0
MF(t)M+N−2dt−

Z x

0
MF(t)M+N−1dt

+
Z x

0
M(N−1)tF(t)M+N−3 f (t)dt−

Z x

0
(N−1)(M−1)tF(t)M+N−2 f (t)dt

+
Z x

0
M(N−1)F(t)N−2 f (t)

Z
ω

t
y(1−F(y))g(y)dydt

By manipulation we could simplify the bidding strategy5:

β(x) = MF(x)N−1
Z

ω

x
y(1−F(y))g(y)dy−

Z x

0
F(t)M+N−1dt

+ MxF(x)M+N−2− (M−1)xF(x)M+N−1

It is trivial to verify that β(·) is monotonic increasing, differentiable, and hence is indeed

an equilibrium for the two-stage game. Hence, we have the following proposition.

Proposition 1. In an all-pay auction with private values and resale, if the resale is conducted

through a second-price auction, the symmetric equilibrium strategy for the first-stage players

is given by β.

The expected revenue to the initial seller in an all-pay auction with resale is given by

R = N
Z

ω

0
β(x) f (x)dx (4)

In an all-pay auction with N bidders and without resale, the equilibrium strategy is given

by

β̃(x) =
Z x

0
yg̃(y)dy (5)

5See Appendix B for details.
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where g̃ is the density function of G̃ = F(·)N−1, and the expected revenue is

R̃ = N
Z

ω

0
β̃(x) f (x)dx = N

Z
ω

0
y(1−F(y))g̃(y)dy (6)

In an all-pay auction with M + N bidders and without resale, the equilibrium strategy is

given

β̂(x) =
Z x

0
yĝ(y)dy (7)

where ĝ is the density function of Ĝ = F(·)M+N−1, and the expected revenue is

R̂ = (M +N)
Z

ω

0
β̂(x) f (x)dx = (M +N)

Z
ω

0
y(1−F(y))ĝ(y)dy (8)

Clearly we have R̂ ≥ R̃ since

R̂ = E[Y (M+N)
2 ]≥ E[Y (N)

2 ] = R̃ (9)

where Y (M+N)
2 is the second highest of M +N values. Similarly, Y (N)

2 is the second highest of

N values. For the general revenue ranking, we have the following result.

Theorem 1. In an all-pay auction with or without resale, the expected revenue for the initial

seller satisfies

R = R̂ ≥ R̃ (10)

Proof. See Appendix.

Remark 1. Without resale, the initial seller could benefit from bringing more competitors to

an all-pay auction. With resale opportunities, if the resale is conducted through a second-

price auction, the initial seller does not lose anything in terms of expected revenue due to

market separation. In particular, if the initial seller could bring all those aftermarket buyers

to the first-stage competition, she will obtain the same expected revenue.
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If we think of the initial seller as a social planner, she may care about social efficiency

besides allocative efficiency and wish to reduce the total expenditure in the first stage.6 In

this case, the social planner could reduce the total expenditure by allowing less players into

competition and forbidding resale. In practise, there are many reasons to limit entry into the

first-stage competition. For instances, in research contests or tournaments for new technol-

ogy, entry into tournaments is limited to save on the cost of conducting and evaluating the

competition, and to minimize the duplication of fixed costs. At times entry into tournaments

is limited to raise the level of contestant effort. Fullerton and McAfee (1999) investigate the

entry-limiting problem and show that, for a large class of contests the optimal number of

competitors is two. They further propose to use a variant of the all-pay auction to efficiently

select the most qualified contestants to compete.

2.2 Optimal Resale Auction

Now suppose the first-stage winner could set a reserve price to extract more surplus. For

simplicity, we assume that he uses the optimal auction characterized by Myerson (1981).

In our case, the first-stage winner resells the prize through an optimal auction mechanism.

Moreover, from Myerson’s characterization, we know that a second-price auction with an

optimally-set reserve price is indeed an optimal auction.

As in Myerson (1981), we define the virtual valuation function as:

ψ(x)≡ x− 1−F(x)
f (x)

(11)

We focus on the regular case, i.e., the virtual value function ψ(·) is an increasing function of

6For example, if the government decides to allocate a monopolistic license, it will induce firms to lobby for
the rent. Of course, other interested firm could obtain the licence through taking over the winning firm in the
second stage.
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the true value x. Since

ψ(x)≡ x− 1
λ(x)

(12)

where λ ≡ f /(1−F) is the hazard rate function associated with F , a sufficient condition for

regularity is that λ(·) is increasing. We will assume that the design problem faced for the

first-stage winner is regular in what follows.

In an optimal auction, the seller will set the reserve price r∗ = ψ−1(x), where x is the true

valuation of the first-stage winner.

Substitute r∗ with r, we could derive the continuation payoff for the first-stage winner:

Π
∗
0 = M×E[m(x,r∗)]+F(r∗)Mx (13)

where

E[m(x,r∗)] = r∗(1−F(r∗))G(r∗)+
Z

ω

r∗
y(1−F(y))g(y)dy (14)

Therefore, in the first stage, suppose all other bidders follow βo, a bidder learns his private

value x, and submits b to maximize

H(β−1
o (b))Π∗

0−b (15)

Maximizing (15) over b, the resulting first-order condition yields:

β
′
o(x) = (N−1)F(x)N−2 f (x)Π∗

0 (16)

and we have r∗ = ψ−1(x). Since βo(0) = 0, we have

βo(x) =
Z x

0
(N−1)F(t)N−2 f (t)Π∗

0(r
∗(t))dt (17)
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Remark 2. The equilibrium bidding strategy βo exhibits a much simpler expression than β,

the equilibrium strategy we characterize when the first-stage winner uses a plain second-

price auction to resell the prize. Certainly different resale mechanisms have different impact

on those first-stage bidders’ strategies. With second-price resale mechanism, the first-stage

bidders have incentives to signal their private values to aftermarket buyers.7 With optimal

resale mechanism, the first-stage bidders have no such incentives since the winner will opti-

mally set the reserve price according to her true value instead of her signalled value.

Again, we could easily verify that βo(·) is monotonic increasing, differentiable and con-

tinuous, and thus is indeed an equilibrium. Hence, we have the following result.

Proposition 2. In an all-pay auction with private values and resale, if the resale is conducted

through an optimal auction, the symmetric equilibrium strategy for the first-stage players is

given by βo.

The expected revenue to the seller, denoted Ro, is

Ro = N
Z

ω

0
βo(x) f (x)dx =

Z
ω

0
N(N−1)(1−F(t))F(t)N−2 f (t)Π∗

0(r
∗(t))dt (18)

Unfortunately, it is not analytically possible to compare Ro with R without assuming a

specific distribution function. However, we do know that, when the winner uses an optimal

auction to resell the prize, the revenue equivalence result does not remain anymore. Without

market separation, the final allocation is efficient in the symmetric equilibrium. With resale

and market separation, the final allocation may not be efficient since there is positive proba-

bility that the prize ends up with unsold in the second stage. The winner trades off allocative

efficiency in order to extract as much surplus as possible. Hence, the allocation rule is vi-

olated and the revenue equivalence is broken. However, the expected surplus extracted by

7Of course, in equilibrium, no one will get deceit and everyone bids truthfully.
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the winner through an optimal auction is no less than that extracted through a second-price

auction. Since the total surplus is fixed, we have

Corollary 1. When the first-stage winner chooses different resale mechanisms, the expected

revenue for the initial seller satisfies

Ro ≤ R

Generally, given these two resale mechanisms, the initial seller never gains through the

existence of resale opportunities. If she has access to the whole market, she should include

all potential N + M players in the first stage to secure as much surplus as possible. If the

resale is conducted through a second-price auction, the initial seller does not lose anything in

terms of expected revenue; if the resale is conducted through an optimal auction, she never

gains and may lose in terms of expected revenue.

3 An Detailed Example

Here we consider a simple example to show our main results. Suppose, each first-stage

bidder has independent private value drawn from the identical uniform distribution over [0,1]

and each aftermarket buyers has independent private value drawn from the identical uniform

distribution over [0,1]. We maintain all other assumptions as before.

3.1 Second-Price Resale Mechanism

3.1.1 Equilibrium

Let’s solve the game through backward induction. We start from the second stage. Suppose

there exists a monotonic increasing equilibrium bidding strategy for the first-stage bidders–

β. Assume that the winning bid is b̄, and aftermarket buyers infer that the winning bidder’s

private valuation v̄ = β−1(b̄). Hence, v̄ will serve as the reserve price in the second-price
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auction. All buyers valuing the prize below v̄ will not submit positive bids, and all buyers

valuing the prize above v̄ will bid their valuations. The expected payment of a bidder with

value v ≥ v̄ is given by

P = v̄G(v̄)+
Z v

v̄
yg(y)dy (19)

where G is the distribution of y = maxm 6= j vm, with a density g. In this example, G(v̄) = v̄M−1.

Therefore,

P = v̄M +
Z v

v̄
y(M−1)yM−2dy =

1
M

v̄M +
M−1

M
vM (20)

The ex ante expected payment of a bidder j is

E[P] =
Z 1

v̄
P f (v)dv =

1
M

v̄M − 2
M +1

v̄M+1 +
M−1

M(M +1)
(21)

Suppose the winner’s private value is v and bids as if her true value is v̄, then the overall

expected payoff of her from resale is:

Π0 = M× [
1
M

v̄M − 2
M +1

v̄M+1 +
M−1

M(M +1)
]+F(v̄)Mv (22)

Therefore, in the first stage, suppose all other bidders follow β, a bidder learns his private

value v, and submits b to maximize

H(β−1(b))Π0−b (23)

where H is the distribution of the highest private value among a first-stage bidder’s competi-

tors. Maximizing (23) over b yields:

1
β′(β−1(b))

[(M +N−1)β−1(b)M+N−2− 2M(M +N)
M +1

β
−1(b)M+N−1

+
(M−1)(N−1)

M +1
β
−1(b)N−2 +(M +N−1)vβ

−1(b)M+N−2] = 1
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In equilibrium, we have β(v) = b, hence

β
′(v) = (M +N−1)vM+N−1 +(M +N−1)vM+N−2

+
(M−1)(N−1)

M +1
vN−2− 2M(M +N)

M +1
vM+N−1

Therefore, the symmetric equilibrium is given by

β(v) = vM+N−1 +
M−1
M +1

vN−1 +
N−1−M2−MN
(M +1)(M +N)

vM+N (24)

It is trivial to show that β′(v) > 0 for any v ∈ (0,1], β(0) = 0 and β(1) = M+N−1
M+N < 1.

Therefore, β(·) is strictly increasing, differentiable, and continuous. Moreover, it is easy to

verify that β is indeed a symmetric equilibrium in the all-pay auction with resale.

It is easy to show that, if there is no secondary market, the symmetric equilibrium strategy

is given by8

β̃(v) =
N−1

N
vN (25)

and if there is no market separation, i.e., the initial seller could gather all potential M + N

bidders into an all-pay auction, the symmetric equilibrium strategy is given by

β̂(v) =
M +N−1

M +N
vM+N (26)

Note if there is no resale market, i.e., M = 0,

β(v) = β̃(v) = β̂(v) =
N−1

N
vN (27)

If the first-stage players anticipate that there will be no interested aftermarket buyers, they

will stop signalling their private information and compete as they would in an all-pay auction

8The easiest way to derive the equilibrium bidding strategy is to apply revenue equivalence theorem.
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without resale.

3.1.2 Revenues

The interesting questions we would like to answer are: when it is optimal to allow resale

opportunities, when it is optimal to forbid resale, and when it is optimal to organize a whole

auction including all potential bidders?

Let RN denote the expected revenue for the seller from an all-pay auction with resale,

R̃N denote the expected revenue for the seller from an all-pay auction without resale, R̂M+N

denote the expected revenue for the seller to organize an all-pay auction with all potential

bidders (without resale). Then we have

RN = N
Z 1

0
β(v)dv =

M +N−1
M +N +1

(28)

R̃N = N
Z 1

0
β̃(v)dv =

N−1
N +1

(29)

R̂M+N = (M +N)
Z 1

0
β̂(v)dv =

M +N−1
M +N +1

(30)

Clearly RN > R̃N . In an all-pay auction with resale, the first-stage bidders not only com-

pete for the prize, but also compete for the reselling opportunity in the secondary stage. The

potential benefit from resale induces those first-stage bidders to bid more aggressively, thus

increase the seller’s expected revenue.

Second, R̂M+N > R̃N . The intuition is straightforward. The presence of additional bidders

make the competition fiercer and thus bidders tend to bid more aggressively. Moreover, the

payment rule also implies that the seller could collect more revenue from additional bidders.

Third, RN = R̂M+N . This could be explained by the celebrated revenue equivalence theo-
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rem in auction theory.9 In our independent private value framework, even if there is a resale

market, the allocation is the same and the prize always goes to the bidder with highest valua-

tion. The bidder with lowest possible valuation always bid zero and thus his expected payoff

is zero. Therefore, the revenue equivalence theorem implies that the expected revenue for the

seller is the same, regardless of the separation of two markets and resale opportunities.

Now let us consider bidders’ equilibrium behaviors in the above three auctions. By simple

manipulation, we have

β(v)− β̃(v) = vM+N [
1
v
− M2 +MN +1−N

(M +1)(M +N)
]+ vN [

M−1
v(M +1)

− N−1
N

] (31)

Therefore, as long as M−1
v(M+1) > N−1

N , we have β(v) > β̃(v). It is not clear whether we have

β(v) > β̃(v) over [0,1], though we do have
R 1

0 β(v)dv >
R 1

0 β̃(v)dv. However, we do know that

both bidding strategies are strictly increasing and continuous, then if we can show β(1) ≥

β̃(1), then we have β(v) > β̃(v) over [0,1]. Clearly, β̃(1) = N−1
N ; and β(1) = M+N−1

M+N >

N−1
N . Therefore, allowing resale opportunities will make the first-stage bidders compete more

aggressively.

Moreover, we have

β(v)− β̂(v) = vM+N [
1
v

+
M−1

vM+1(M +1)
− 2M

M +1
]≥ 0 (32)

The last inequality follows since

1
v

+
M−1

vM+1(M +1)
− 2M

M +1
≥ 1+

M−1
M +1

− 2M
M +1

= 0

Therefore, each bidder bids more aggressively if the initial seller strategically excludes some

9Riley and Samuelson (1981) and Myerson (1981) prove a revenue-equivalence theorem which states that,
under the assumptions of risk neutrality, independence of valuations, and symmetry among bidders, all auctions
rules within a broad class generate the same expected revenue for the seller if, in equilibrium, the incentive to
participate in the auction remain the same.
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bidders from the first-stage competition and forces them to compete in the second stage. This

confirms with intuition underlying the revenue equivalence result. In an all-pay auction with

resale, there are less bidders in the first-stage competition but the seller still gets the same

expected revenue as organizing an auction including all potential bidders. Therefore, for the

revenue equivalence to hold, it must be true that the first-stage bidders bid more aggressively

with resale opportunities, since any extra surplus from the second-stage goes to the winner. In

equilibrium, the seller does not lose anything by excluding some bidders from the first-stage

competition.

Finally, we have

β̃(v)− β̂(v) = vN [
N−1

N
− vM(M +N−1)

M +N
] (33)

Therefore, β̃(v) > β̂(v) if and only if v < M
√

(N−1)(M+1)
N(M+N−1 . Without resale opportunities, a

bidder with relatively low value will bid less aggressively if more competitors are included

in all-pay auctions. With more competitors, a bidder will bid more aggressively only if he

has a relatively high value. This finding is related to certain experimental findings about

bidders’ behaviors in all-pay auctions. Noussair and Silver (2006) observe extensive use of a

dichotomous bidding strategy: for relatively low valuations, bids of zero are common, while

for high valuations, bids exceeding equilibrium levels are typical.10

Recall that, with independent private values identically drawn from uniform distribution

over [0,1], a bidder in first-price auction will bid N−1
N v if there are N bidders and will bid

more aggressively with increasing N.11 Clearly, N−1
N v ≥ N−1

N vN for all v ∈ [0,1]. This is

because of the unconditional payment rule in the all-pay auctions. Regardless winning or

10The unconditional payment rule has a bite here. In standard winner-pay auctions, we do not observe such
dichotomous bidding strategies.

11However, in all-pay auctions, not everyone will bid more aggressively with more competitors. Only those
with relatively high valuations will compete more aggressively, but those with relatively low valuations will
compete less aggressively.
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losing, each bidder has to pay his bid in all-pay auctions. Contrasting to the conditional

payment rule in first-price auctions where only the winner is required to pay, bidders in all-

pay auctions further shade their bids in order to insure against any potential loss in case of

losing the auction. This could also be explained by revenue equivalence result. The expected

revenues are the same across both auction forms, then bidders in all-pay auctions must bid

less aggressively than those in first-price auctions since everyone needs to pay their bids in

all-pay auctions.

3.1.3 Optimal Exclusion

Since the initial seller benefits from existence of an active resale market, it may be natural to

ask whether she has incentive to exclude some buyers from the primary competition to create

a resale market. From previous analysis, if the first-stage winner use a second-price auction

to resell the prize, the expected revenue to the initial seller is the same if she excludes some

bidders from the first-stage competition and force them into a resale market. In some cases,

the first-stage winner may have access to information or commitment technologies enabling

him to extract more surplus from other buyers than the initial seller can. In such cases the

seller may benefit from letting buyers compete for the right to sell in the second stage, thereby

passing through at least some of the added surplus extraction realized in the second stage. We

address this problem through the following example.12

Example 1. Suppose there are N risk-neutral bidders, each having independent private val-

uation from the identical uniform distribution F on [0,1].

For simplicity, there are no new entrant arriving exogenously, but the initial seller may

exclude bidders from the primary competition, forcing them into the resale market. First, by

applying the revenue equivalence theorem, the expected revenue (RN) is the expected value

12See Haile (1999) for a similar analysis of second-price auctions.
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of the second highest valuation among N bidders. Hence, we have

RN = E[Y1] =
N−1
N +1

(34)

Now suppose one of the bidders is excluded at random, this creates an opportunity for

the winner to resell in the secondary market. Suppose the winner of the primary competi-

tion could extract a share α of any surplus in the resale market. Then, upon winning, the

endogenously-determined valuation becomes:

v̂(x) = xF(x)+
Z 1

x
[x+α(z− x)] f (z)dz = (1−α)x+

α

2
(1+ x2) (35)

Solving the two-stage game as before, we get the symmetric equilibrium strategy

βN−1 =
Z x

0
v̂(t)tN−2dt (36)

Therefore,

RN−1 = (N−1)
Z 1

0

Z x

0
v̂(t)tN−2dtdx =

N2−N−2+3α

N(N +1)
(37)

Then RN−1 −RN = 3α−2
N(N+1) . Therefore, as long as α > 2

3 , i.e., the first-stage winner could

extract at least two thirds of resale surplus, the initial seller could benefit from excluding one

bidder from the first-stage competition and creating an active resale market.13

Assuming complete information, Baye et al. (1993) present an interesting exclusion prin-

ciple: a revenue maximizing politician may find it in her best interest to exclude lobbyists

with valuations above a threshold from participating in the all-pay auction. The intuition is

quite straightforward. The presence of high-value competitors makes the playing field un-

equal and deter low-value competitors from bidding aggressively. The exclusion makes the

13It is not so clear whether the initial seller benefits from excluding more than one bidder from the first-stage
competition when the first-stage winner could extract at least two thirds of resale surplus.
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competition more even and bidders submit higher bids, which in turn increases the initial

seller’s expected revenue.

This optimal exclusion principle applies not only for all-pay auctions. Haile (1999) de-

rives similar result for a second-price auction followed by resale. In particular, he shows

that as long as the first-stage winner extracts no less than two thirds of resale surplus, the

initial seller could benefit from excluding one bidder from the first-stage competition. Bose

and Deltas (1999) study an auction with two distinct type of potential bidders: consumers

who bid for their own consumption and speculators who bid for resale. They show that, if

the speculators have access to a larger market of consumers than the auctioneer, then the

auctioneer may prefer to prevent the consumers from participating in the auction.

3.2 Optimal Resale Mechanism

Now suppose resale takes place via an optimal auction characterized by Myerson (1981).

That is, the first-stage winner organizes an optimal auction on the secondary market. Different

from Myerson’s setting, the seller of the secondary market, i.e., the first-stage winner, values

the object at a positive amount instead of zero. Again we solve this two-stage game through

backward induction.

Consider the second stage. Suppose there exists a monotonic increasing equilibrium bid-

ding strategy for the first-stage bidders-βo. From Myerson (1981), we know that a second-

price auction with a properly chosen reserve price will be an optimal auction. We focus on

the regular case in which every aftermarket buyer’s virtual valuation ψ(·) is an increasing

function of the true value vi. Define

ψ(vi)≡ vi−
1−F(vi)

f (vi)
(38)
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to be the virtual valuation of a buyer with value vi.14 In our special case with symmetric

uniform distribution, ψ(vi) = 2vi − 1. Hence, if a first-stage bidder with value v wins the

competition, he will set the reserve price equal to ψ−1(v) = 1+v
2 . Let r ≡ ψ−1(v). In the

second stage, the expected payment of a bidder with value v ≥ r is given by

P = rG(r)+
Z v

r
yg(y)dy (39)

where G is the distribution of y = maxm6= j vm, with a density g. In this example, G(r) = rM−1.

Therefore,

P = rM +
Z v

r
y(M−1)yM−2dy =

1
M

rM +
M−1

M
vM (40)

The ex ante expected payment of a bidder j is

E[P] =
Z 1

r
P f (v)dv

=
Z 1

r
[

1
M

rM +
M−1

M
vM]dv

=
1
M

rM − 2
M +1

rM+1 +
M−1

M(M +1)

Suppose the winner’s private value is x and sets reserve price equal to r in an optimal

auction, then the overall expected payoff of her from resale is:

Π0 = M× [
1
M

rM − 2
M +1

rM+1 +
M−1

M(M +1)
]+F(r)Mx (41)

Therefore, in the first stage, suppose all other bidders follow βo, a bidder learns his private

14The virtual valuation can be interpreted as a marginal revenue, if we consider the seller as a monopolist
using third-degree price discrimination. Bulow and Roberts (1989) show that the main results and elegant
techniques developed in optimal auction design can be reinterpreted in the language of standard micro theory.

21



value x, and submits b to maximize

H(β−1
o (b))Π0−b (42)

where H is the distribution of the highest private value among a first-stage bidder’s competi-

tors. Maximizing (42) over b, the first-order condition yields:

β
′
o(x) =

(N−1)(M−1)
M +1

xN−2 +
2(N−1)

M +1
xN−2(

x+1
2

)M+1 (43)

Since βo(0) = 0, we have

βo(x) =
M−1
M +1

xN−1 +
(N−1)

(M +1)2M

Z x

0
tN−2(t +1)M+1dt (44)

As previous analysis, we derive the expected revenue for the initial seller when the first-

stage winner uses an optimal auction to resell the prize to aftermarket buyers. Let Ro denote

the expected revenue to the initial seller in this case, we have

Ro = N
Z 1

0
βo(x)dx

=
M−1
M +1

+
N(N−1)
(M +1)2M

Z 1

0
(
Z x

0
tN−2(t +1)M+1dt)dx

=
M−1
M +1

+
N(N−1)
(M +1)2M

Z 1

0
(
Z 1

t
dx)tN−2(t +1)M+1dt

=
M−1
M +1

+
N(N−1)
(M +1)2M

Z 1

0
tN−2(1− t)(t +1)M+1dt

where the third equality follows as we interchange the order of integration.

However, given the above expression of Ro, it is too complicated to compare it with RN ,

i.e., the expected revenue for the initial seller when the first-stage winner uses a second-price

auction to resell the prize. Roughly speaking, the revenue equivalent result may not hold any
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longer. We use the following example to get some rough ideas.

Example 2. There are two first-stage players (N = 2) and two aftermarket buyers (M = 2).

All players have independent private value drawn from a uniform distribution over [0,1].

According to those equilibrium strategies we characterize above, RN = RM+N = M+N−1
M+N+1 =

3
5 . Now let’s calculate Ro. Plugging N = M = 2 into the expression of Ro, we have

Ro =
1
3

+
2
12

Z 1

0
(1− t)(t +1)3dt =

11
20

<
3
5

= RN (45)

Before we draw the conclusions, let’s consider another example.

Example 3. There are three first-stage players (N = 3) and two aftermarket buyers (M = 2).

All players have independent private value drawn from a uniform distribution over [0,1].

Repeating the same procedure, we have RN = 2
3 . As for Ro in this case, we have

Ro =
1
3

+
1
2

Z 1

0
t(1− t)(t +1)3dt =

19
30

<
2
3

= RN (46)

Example 4. There are two first-stage players (N = 2) and three aftermarket buyers (M = 3).

All players have independent private value drawn from a uniform distribution over [0,1].

Repeating the same procedure, we have RN = 2
3 . As for Ro in this case, we have

Ro =
1
2

+
1

16

Z 1

0
(1− t)(t +1)4dt =

297
480

<
2
3

= RN (47)

Remark 3. From our simple examples, we see that the expected revenue collected by the

initial seller declines when the first-stage winner resells the prize through an optimal auction

(in Myerson’s sense) instead of a second-price auction. Moreover, the revenue equivalent

result does not hold any more. What is the intuition underlying this result? Using an optimal
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auction, the first-stage winner trades expected surplus with allocative efficiency. The ex post

allocation is efficient when the first-stage winner resells the prize through a plain second-

price auction, since it is always the player with the highest valuation who gets the prize.

However, with optimal resale, though the first-stage winner could collect more expected rev-

enue, the ex post allocation may not be efficient, since the prize may end up with unsold even

if it is efficient to trade. Since the total surplus is fixed, the expected surplus extracted by

the winner through an optimal auction is no less than that extracted through a second-price

auction, the expected revenue for the initial seller is the opposite.

Given the total number of players, when the first-stage winner resells the prize through an

optimal auction, there may be certain difference regarding how many players the initial seller

excludes from the primary competition. From our simple examples, we see that the initial

seller may benefit from excluding less players from the primary competition. Continuing this

argument, the initial seller should not exclude any player from the primary competition, since

that would decrease her expected revenue. It seems that this conclusion contradicts with the

result we present in Example 1. Actually it is not the case. In Example 1, though the first-

stage winner could extract more surplus from aftermarket buyers, the ex post allocation is

still efficient.

To summarize, when the first-stage winner uses a plain second-price auction to resell the

prize, the initial seller gets the same expected revenue; when the first-stage winner uses an

optimal auction to resell the prize, the initial seller gets less expected revenue. Moreover,

when the first-stage winner has ability to extract at least two thirds of resale surplus, the

initial seller benefits from excluding one player from the primary competition.

24



4 Conclusions

We study all-pay auctions with resale opportunities when players have independent private

values. We enrich a static all-pay auction model by introducing resale opportunities, wishing

to investigate how resale changes primary players’ strategic behaviors. Given existence of a

resale market, the primary players will compete more aggressively over an indivisible prize.

Not only do they compete over the prize itself, but also they compete over the selling right

in a resale market since there may be new market entrants. The existence of a resale market

establishes a link between players’ first-stage bidding and his or her resale surplus, leaving

first-stage players’ valuation endogenously determined.

In the resale market, we formalize two resale mechanisms: a second-price auction and an

optimal auction. Certainly different resale mechanism has different impact on primary play-

ers’ strategic behaviors. In both cases, we characterize the symmetric equilibria for all-pay

auctions with private values and resale. Based on those equilibria, we derive a revenue-

ranking result for all-pay auctions with and without resale opportunities in each resale mech-

anism. Using a illustrative example, we also compare initial seller’s expected revenues when

the first-stage winner uses different resale mechanisms. We derive an interesting revenue-

equivalence result when the first-stage winner conducts resale through a second-price auc-

tion. In particular, the initial seller does not lose anything in terms of expected revenue due to

the market separation. However, this result does not remain if the first-stage winner conducts

resale through an optimal auction. The tradeoff between expected revenue and allocative ef-

ficiency reduces the initial seller’s expected revenue. Hence, if there is no market separation,

the initial seller does not benefit from excluding some players from primary competition and

forcing them into a resale market.

However, depending on the first-stage winner’s ability of extracting surplus in the resale

stage, the initial seller may benefit from excluding some players from the primary competition
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thus creating a resale market. Extremely, if the first-stage winner has full bargaining power

and thus extract all resale surplus, they will compete even more aggressively and leave more

surplus to the initial seller. Of course this is a very strong assumption, meaning the secondary

players do not have any information rent. How this works needs more investigation and more

real-life examples are needed to support such an argument.

One future research concerns the endogenous entry of players if we allow the first-stage

losing players to compete in the resale market. Then a player may strategically bid to lose

the first-stage auction and buy the prize in the resale market. Using a two-player model with

public values, Pagnozzi (2007) shows why a strong bidder may prefer to drop out of the

auction before the price has reached her valuation and acquire the prize in the aftermarket.

The intuition is that a strong bidder may be in a better bargaining position in the aftermarket

if her rival won at a relatively low price. Extending the analysis to more than two players

with private values will be an interesting research direction.

Moreover, the main results in this paper would serve as natural theoretical prediction for

experimental study of all-pay auctions with resale. Noussair and Silver (2006) investigate

all-pay auctions with independent private values without resale. A natural extension would

be to study the same model but with resale opportunities.
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Appendix A

Proof of the Revenue Ranking Result: R = R̂ ≥ R̃

Proof. To show that R = R̂, let us first calculate E[β(x)].

E[β(x)] =
Z

ω

0
β(x) f (x)dx

=
Z

ω

0
MF(x)N−1

Z
ω

x
y(1−F(y))g(y)dy f (x)dx+

Z
ω

0
MxF(x)M+N−2 f (x)dx

−
Z

ω

0
(M−1)xF(x)M+N−1 f (x)dx−

Z
ω

0

Z x

0
F(t)M+N−1dt f (x)dx

=
Z

ω

0

Z
ω

x

M
N

y(1−F(y))g(y)dydF(x)N +
Z

ω

0
MxF(x)M+N−2 f (x)dx

−
Z

ω

0
(1−F(x))F(x)M+N−1dx− (M−1)

Z
ω

0
xF(x)M+N−1 f (x)dx

=
Z

ω

0

M(M−1)
N

F(x)M+N−2x(1−F(x)) f (x)dx+
Z

ω

0
xd[(1−F(x))F(x)M+N−1]

+
Z

ω

0
MxF(x)M+N−2 f (x)dx−

Z
ω

0
(M−1)xF(x)M+N−1 f (x)dx

=
Z

ω

0

M(M +N−1)
N

F(x)M+N−2 f (x)xdx−
Z

ω

0

(M +N)(M−1)
N

F(x)M+N−1 f (x)xdx

−
Z

ω

0
[(M +N−1)F(x)M+N−2(1−F(x)) f (x)−F(x)M+N−1 f (x)]xdx

=
Z

ω

0

M(M +N−1)
N

F(x)M+N−2 f (x)xdx−
Z

ω

0

(M +N)(M−1)
N

F(x)M+N−1 f (x)xdx

+
Z

ω

0
(M +N−1)F(x)M+N−2 f (x)xdx−

Z
ω

0
(M +N)F(x)M+N−1 f (x)xdx

=
Z

ω

0

(M +N)(M +N−1)
N

F(x)M+N−2 f (x)xdx

−
Z

ω

0

(M +N)(M +N−1)
N

F(x)M+N−1 f (x)xdx

=
Z

ω

0

(M +N)(M +N−1)
N

(1−F(x))F(x)M+N−2 f (x)xdx

where the third and fourth equality result by repeating the procedure of integrating by parts,

and combining similar items.
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Therefore, we have

R = NE[β(x)] =
Z

ω

0
(M +N)(M +N−1)(1−F(x))F(x)M+N−2 f (x)xdx

The above expression is nothing but the expectation of second-highest order statistics

among (M + N) values. In particular, let Y (M+N)
2 denote the second-highest order statistics

among (M +N) values, where each value is an independent draw from identical distribution

F(·) with density f . Then we have

Ĝ(y)= F(y)M+N +(M+N)F(y)M+N−1(1−F(y))= (M+N)F(y)M+N−1−(M+N−1)F(y)M+N

The associated probability density function is

ĝ(y) = (M +N)(M +N−1)(1−F(y))F(y)M+N−2 f (y)

Therefore,

R =
Z

ω

0
(M +N)(M +N−1)(1−F(x))F(x)M+N−2 f (x)xdx = E[Y (M+N)

2 ]

Recall that

R̂ = (M +N)
Z

ω

0
β̂(x) f (x)dx

= (M +N)
Z

ω

0
x(1−F(x))ĝ(x)dx

=
Z

ω

0
(M +N)(M +N−1)(1−F(x))F(x)M+N−2 f (x)xdx

= E[Y (M+N)
2 ]

Obviously, we obtain R = R̂ = E[Y (M+N)
2 ]. Hence, the revenue equivalence remains.
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Recall that

R̃ = N
Z

ω

0
β̃(x) f (x)dx

= N
Z

ω

0
x(1−F(x))g̃(x)dx

=
Z

ω

0
N(N−1)(1−F(x))F(x)N−2 f (x)xdx

= E[Y (N)
2 ]

where Y (N)
2 is the second-highest order statistics of N values.

Clearly we have R̂ ≥ R̃ since

R̂ = E[Y (M+N)
2 ]≥ E[Y (N)

2 ] = R̃

Therefore, we obtain

R = R̂ ≥ R̃

Appendix B

Simplify the bidding strategy for second-price resale mechanism

Recall that

β(x) =
Z x

0
MF(t)M+N−2dt−

Z x

0
MF(t)M+N−1dt

+
Z x

0
M(N−1)tF(t)M+N−3 f (t)dt−

Z x

0
(N−1)(M−1)tF(t)M+N−2 f (t)dt

+
Z x

0
M(N−1)F(t)N−2 f (t)

Z
ω

t
y(1−F(y))g(y)dydt

29



To simply the bidding strategy, we show

Z x

0
M(N−1)F(t)N−2 f (t)

Z
ω

t
y(1−F(y))g(y)dydt

=
Z x

0
M

Z
ω

t
y(1−F(y))g(y)dydF(t)N−1

= M[
Z

ω

t
y(1−F(y))g(y)dyF(x)N−1]|x0−

Z x

0
MF(t)N−1d[

Z
ω

t
y(1−F(y))g(y)dy]

= MF(x)N−1
Z

ω

x
y(1−F(y))g(y)dy+

Z x

0
tF(t)N−1(1−F(t))g(t)dt

Hence,

β(x) = MF(x)N−1
Z

ω

x
y(1−F(y))g(y)dy+

Z x

0
tF(t)N−1(1−F(t))g(t)dt

+
Z x

0
MF(t)M+N−2dt−

Z x

0
MF(t)M+N−1dt

+
Z x

0
M(N−1)tF(t)M+N−3 f (t)dt−

Z x

0
(N−1)(M−1)tF(t)M+N−2 f (t)dt

= MF(x)N−1
Z

ω

x
y(1−F(y))g(y)dy

+
Z x

0
MF(t)M+N−2dt +

Z x

0
M(M +N−2)tF(t)M+N−3 f (t)dt

−
Z x

0
MF(t)M+N−1dt−

Z x

0
(M−1)(M +N−1)tF(t)M+N−2 f (t)dt

= MF(x)N−1
Z

ω

x
y(1−F(y))g(y)dy−

Z x

0
F(t)M+N−1dt

+ MxF(x)M+N−2− (M−1)xF(x)M+N−1
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