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Abstract 

In this paper, I develop new methods for structural estimation of a first-price auction 

model with a stochastic number of bidders in which a bidder does not know how 

many competitors he faces when he submits a bid. Within the symmetric 

independent private values (IPV) model, I show that the first and second-highest 

bids nonparametrically identify bidders' value distribution and the distribution of 

the number of potential bidders. Unlike previous studies, knowledge of neither the 

number of potential bidders nor the number of potential bidders with valuations 

above the reserve price is necessary. The essence is that it is shown that the potential 

bidders' equilibrium mark-down is identified from the first and second-highest bids. 

Once the identification of bidders' equilibrium markdown is established, 

identification of bidders' value distribution and the distribution of the number of 

bidders is obtained by applying the results in Gurre, Perrigne, and Vuong (2000, 

Econometrica) and Song (2007, UBC). I then propose a consistent estimator of the 

bidders' value distribution for both cases: (1) a case in which all bids are available; 

and (2) a case in which only top two bids are available. I evaluate the estimator for 

the first case by Monte Carlo experiments and the results show that the estimator 

performs very well. 



1 Introduction

In this paper, I develop a new method for structural estimation of a first-price auction

model with a stochastic number of bidders in which a bidder does not know how many

competitors he faces when he submits a bid. Recently structural analysis of auction data

have attracted much interest mainly because structural analysis is essential to implement-

ing an optimal auction mechanism. In spite of the extensive theory concerning mechanism

design, it is impossible to determine the revenue-maximizing selling mechanism without

knowledge of the potential bidders’ value distribution. Furthermore, structural analysis

often provides methods to test the predictions of game theory and/or decide which model

fits a certain market better among the competing models.

The goal of the structural analysis is estimating the latent structure, typically the

potential bidders’ value distribution, from the observed bids. A natural strategy is com-

puting the inverse bidding function which provides a map from the observed bids onto the

latent structure. In the standard first-price auction model, however, the inverse bid func-

tion is not explicitly solved unless simple parametric specifications are imposed. Guerre,

Perrigne, and Vuong (2000) resolve this difficulty within the symmetric independent pri-

vate value (IPV) model. They develop an indirect two-step procedure for estimating the

distribution of bidders’ private values from observed bids, which requires neither paramet-

ric assumptions nor the computation of the inverse bidding function. Li, Perrigne, and

Vuong (2000) and Li, Perrigne, and Vuong (2002) extend the results to the conditionally

independent private information model and the affiliated private value model.

This paper extends the previous literature in two directions within the symmetric

IPV model. First, I newly show that only top two bids identify the potential bidders’

value distribution and the distribution of the number of potential bidders.1 All existing

results need observation of all bids above the reserve price or information regarding the

number of potential bidders — either the number of potential bidders or the number of

potential bidders with valuations above the reserve price. Even in sealed-bid auctions,

1Actually, in the model presented in Session 2, the number of potential bidders is constant and part of

them become active bidders. Hence the number of active bidders is stochastic.
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some potential bidders with valuations above the reserve price will not take part in auctions

if there are positive bid preparation costs as in the model presented in Samuelson (1985).

In that case, the researcher cannot recognize every potential bidder’s existence. Moreover,

the estimation strategy which requires only top two bids could be useful even to empirical

analysis of auctions in which all bids are available. Generally, if we can estimate a model

from part of observables, there is room to test the considered model by exploiting the

observables which is not used for estimation of the model.

Second, I allow the number of potential bidders to be stochastic. The entry model

proposed in Levin and Smith (1994) generates the stochastic number of potential bidders.

In addition, the number of potential bidders is stochastic in some government auctions in

which only selected contractors are invited to submit bids (McAfee and McMillan, 1987).

If we assume that both bidders and researcher know the realization of the number of

potential bidders, econometric methods for the constant number of potential bidders are

easily extended to the case of the stochastic number of potential bidders. However, in a

sealed-bid auction, it is not always true that bidders know the number of their competitors,

since the bidders do not assemble together in one place. Actually, we often observe that

a bidder submitted a bid greater than the reserve price even if he was only bidder; this

implies that bidders are uncertain about the number of their competitors when they make

a bid. The econometric methods in this paper is for the case where bidders know the

distribution of the number of their competitors but do not know the actual number of

their competitors. I consider two cases: (i) the case in which all bids are available; and

(ii) the case in which only top two bids are available. Although there exists an obvious

estimation method for the first case, I proposes an alternative, simple one.

The rest of the paper is organized as follows: The next session presents a first-price

auction model with a stochastic number of bidders. In Session 2, the most crucial part of

this paper, I provide an identification result. Consistent estimators are proposed in Session

4 and Monte Carlo simulation results are presented in Session 5. Session 6 mentions a

tentative application very briefly. I make concluding remarks in Session 7.

2



2 Model within the Symmetric IPV Framework

I consider a first-price sealed-bid auction of a single indivisible good. Throughout the

paper, I adopt the convention of denoting random variables in upper case, and their

associated realizations in lower case. There are l risk-neutral potential bidders, and each

potential bidder becomes an active bidder with the same probability. A is the set of

active bidders and a random variable, N represents the number of active bidders. Let

pn denote Pr(N = n). Each active bidder i draws his valuation V i independently from

the absolutely continuous distribution F (v), having support on [v, v] (v > 0). Since the

presence of a reserve price does not change analysis much, I assume there is no reserve

price for simplicity.2 3 Each active bidder knows only his valuation, the distribution F (v),

and the probabilities pn. However, unlike the most empirical auction literature, an active

bidder is assumed to be unaware of the realization of N . Every active bidder takes part

in the auction.4

In a first-price auction, each bidder submits a sealed bid and the highest bidder buys

the object at a price equal to his bid. I consider a symmetric, increasing, and differentiable

Bayesian-Nash equilibrium strategy β(v) which specifies the active bidder’s bid amount

as a function of his valuation. Define qin = Pr(N = n|i ∈ A) as the probability that

the number of active bidders is n including bidder i conditional on his being an active

bidder. Clearly, qi0 = 0. Since each potential bidder becomes an active bidder with the

same probability, qin is the same for all i. Hence define qn = qin ∀ i. Krishna (2002) then

2 If a seller sets a binding reserve price r > 0, only the active bidder with valuation above r takes part in

the auction. In that case, we can identify only the truncated distribution F (v|V ≥ r) and p′n (n = 1, ..., l)

when p′n is defined as follows.

p
′

n =
l∑

k=n

pk ·


 k

n


 (1− F (r))nF (r)k−n

3Even though a seller does not set a reserve price, zero is a reserve price in practice. The followed

analysis in the paper can be easily adapted by changing "0" to "reserve price" in auctions with a reserve

price.

4A method in Sessions 4 will be applicable if top two active bidders take part in the auction.
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shows that β(V ) is characterized as follows:

β(v) =
l∑

n=2





qn · F (v)
n−1

(q1 +
l∑

n=2
qn · F (v)n−1)

· ( v −
1

F (v)n−1

∫ v

v
F (u)n−1du )





. (1)

For empirical purposes, as first suggested in Guerre, Perrigne, and Vuong (2000), it is

more convenient to express each active bidder’s valuation as a function of his bid and

the distribution of all active bidders’ bids. Hence I derive necessary conditions of β(V )

which are used for identification and estimation of the model in next two sessions. I

first define necessary notations. Define G(b) = F (β−1(b)). In other words, G(b) is the

distribution of β(V ). An associated density of G(b) is denoted by g(b). Let G(i:n)(b)

denote the distribution of the ith order statistic from an i.i.d. sample of size n from the

distribution G(b) with having g(i:n)(b) as a density. Finally, M i denote the maximum

among the bids of an active bidder i’s competitors. If there are no competitors, M i = 0.

Since I consider a symmetric model, the distribution of M i is the same for all i. The same

distribution of M i is denoted by GM(b). The distribution GM(b) then can be written as

follows:

GM(b) =





q1 +
l∑

n=2
qnG

(n−1:n−1)(b), b ≥ 0

0, , b < 0

(2)

Active bidder i’s expected payoff is

(vi − bi)GM(bi)

where bi is a bidder i’s bid. Maximizing the expected payoff with respect to bi yields the

first-order condition:

vi = bi +
GM(bi)

gM(b)
(3)

where gM(b) = ∂
∂bG

M(b) =
l∑

n=2
qng

(n−1:n−1)(b) where b > 0.5 Every equilibrium bid satis-

fies Equation (3).

5Note that gM (b) is not a density function of GM(b) which is discontinuous at 0.
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3 Nonparametric Identification

The model primitives are F (v) and pn (n = 0, 1, ..., l). Identification depends on the data

available. I derive identification results for the case where only the highest and second-

highest bids are observed. I assume that the highest bid is recorded as zero if there are

no active bidders and the second-highest bid is recorded as zero if there are less than

two active bidders. Knowledge of the number of active bidders is not required. I start

by Theorem 1 providing a new expression for the distribution of the highest competitor’s

bids conditional on a bidder’s participation as a function of the distribution of top two

bids.

Theorem 1 Let

Y 1 =





The highest bid, if N ≥ 1

0 , if N = 0
and

Y 2 =





The second-highest bid, if N ≥ 2

0 , if N < 2
.

Let H1(y1) denote the distribution of Y 1, and H2(y2) denote the distribution of Y 2.

Also define h2(y2) = ∂
∂y2H2(y2), y2 > 0.

Then,
GM(b)

gM(b)
=

H2(b)−H1(b)

h2(b)

Proof. Application of Lemma 1 of McAfee and McMillan (1987) yields:

qn =
npn
pe

(4)
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From Equation (2) and (3),

GM(b) = q1 +
l∑

n=2
qn ·G

(n−1:n−1)(b)

=
p1
pe
+

l∑
n=2

npn
pe

·G(b)n−1

gM(b) =
l∑

n=2

qng
(n−1:n−1)(b)

∂

∂b
GM(b)

=
l∑

n=2

npn
pe

· (n− 1) ·G(b)n−2 · g(b).

Therefore,

GM(b)

gM(b)
=

p1 +
l∑

n=2
npn ·G(b)n−1

l∑
n=2

npn · (n− 1) ·G(b)n−2 · g(b)

(5)

On the other hand,

H1(b) = p0 +
l∑

n=1
pnG

(n:n)(b)

= p0 +
l∑

n=1
pnG(b)

n

H2(b) = p0 + p1 +
l∑

n=2
pnG

(n−1:n)(b)

= p0 + p1 +
l∑

n=2
pn
[
nG(b)n−1 − (n− 1)G(b)n

]

= p0 + p1 +
l∑

n=2
pnnG(b)

n−1(1−G(b)) +
l∑

n=2
pnG(b)

n

= H1(b)− p1G(b) + p1 +
l∑

n=2
pnnG(b)

n−1(1−G(b))

= (1−G(b))

[
p1 +

l∑
n=2

pnnG(b)
n−1

]
+H1(b)

h2(b) =
l∑

n=2
pnn(n− 1)G(b)

n−2g(b)(1−G(b))

Therefore,
H2(b)−H1(b)

1−G(b)
= p1 +

l∑
n=2

pnnG(b)
n−1
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and
h2(b)

1−G(b)
=

l∑
n=2

npn(n− 1)G(b)
n−2g(b).

This shows that

H2(b)−H1(b)

h2(b)
=

p1 +
l∑

n=2
pnnG(b)

n−1

l∑
n=2

npn(n− 1)G(b)n−2g(b)

=
GM(b)

gM(b)
.

Corollary 2 The highest and second-highest bid identify F (v) and pn (n = 0, 1, ..., l).

Proof. (i) Identification of F (v)

Theorem 1 implies that Y 1 and Y 2 identify GM(·)/gM(·). Once GM(·)/gM(·) is iden-

tified, the joint distribution of the highest and the second-highest bidders’ valuation is

identified by employing Equation (3). Lemma 1 in Song(2007)6 then implies identification

of F (v).

(ii) Identification of pn (n = 0, 1, ..., l)

Let denote by F1(v) the distribution of the highest bidders’ valuation. Then

F1(v) = p0 + p1F (v) + p2F (v)
2 + · · · · · ·+ plF (v)

l.

Given identification of F1(·) and F (·), the coefficients of F (y), F (y)2, ..., F (y)l in the above

equation is identified; therefore, identification of pn (n = 0, 1, ..., l) is established.

4 Nonparametric Estimation of F (v)

I consider a sample of T independent first-price auctions. Assume that the active bidders’

value distribution, the distribution of the number of active bidders are fixed in all auctions

in the sample. Let Nt denote the number of active bidders at auction t. At each auction

t, B
(1:N

t
)

t , ..., B
(N

t
:N

t
)

t are the order statistics of active bidders’ bids with B
(k:N

t
)

t denoting

the kth-lowest among Nt. Bidder i’s bid is denoted by Bi
t. (i = 1, 2, ...,Nt).

6An arbitrary absolutely-continuous distribution F (·) is nonparametrically identified from observations

of any two order statistics from an i.i.d sample, even when the sample size is unknown and stochastic.
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For a consistent estimator of F (v), I will employ a two-step nonparametric estimation

procedure which is similar to that in Guerre, Perrigne, and Vuong (2000) or Li, Perrigne,

and Vuong (2000):

Step 1: Construct a sample of pseudo private values based on Equation (3) using a

nonparametric estimate of GM(·)/gM(·) from observed bids.

Step 2: Use the pseudo sample constructed in Step 1 to estimate F (v) nonparametri-

cally.

I propose a consistent estimator of F (v) for two different cases. I start by the case

in which all bids are available and then consider the case in which only top two bids are

available.

4.1 Case 1: All bids are available

If all active bidders’ bids are available, there is an obvious estimation procedure for

GM(·)/gM(·): we first estimate the distributions ofNt and Bit from the number of observed

bidders and their bids. GM(·) is a function of qi and G(n−1:n−1)(b) (i = 1, ..., l), which

depend on the distributions of Nt and Bit respectively. Hence we can obtain a consistent

estimator of GM(·)/gM(·). In this session, I propose another, more simple estimation

procedure which does not require separate estimation of the distributions of Nt and Bi
t.

For convenience, let s =
T∑
t=1

nt. Construct a random variable, M i
t : the maximum

among bids of bidder i’s competitors at auction t. If there are no competitors, M i
t = 0.

By construction, we can obtain s realizations of M i
t . An important observation is that the

distribution of M i
t is G

M(·); this is shown in Theorem 3.

In the first step, noting that M i
t � GM(·), I estimate

GM(·)/gM(·) by ĜM(·)/ĝM(·), where

ĜM(b) =
1

s

T∑
t=1

nt∑
i=1
1(mi

t ≤ b)

ĝM(b) =
1

s · λgM

T∑
t=1

nt∑
i=1

KgM

(
b−mi

t

λgM

)
· 1(mi

t �= 0).
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where λgM is a bandwidth and KgM is a kernel with ρgM -length support. The term,

1(mi
t �= 0), is necessary because GM(b) has mass at 0. Note that gM(b) was not a density

function of GM(b).

The idea of constructing M i
t is an extension of Li, Perrigne, and Vuong (2000) where

the number of active bidders is the same in all auctions. M i
t is distributed according to

G(nt−1:nt−1)(b). Hence, in the constant number of bidders case,M i
t is distributed according

to GM(·) for all auction t. On the other hand, in the stochastic number of bidders case,

the distribution ofM i
t is different according to nt, and GM(·) is a weighted sum of different

G(nt−1:nt−1)(b). Therefore how to reflect M i
t from different auctions to the estimation of

GM(·) is a critical issue. For reference, G̃M(b) defined as follows might be tempting as an

estimator of GM(b), but G̃M(b) is inconsistent.

G̃M(b) =
1

T

T∑
t=1

{
1

nt

nt∑
i=1
1(mi

t ≤ b)

}
(7)

Generally G̃M(b) is different from ĜM(b), unless nt is the same for all t.

G̃M(b) =
1

T

T∑
t=1

{
1

nt

nt∑
i=1
1(mi

t ≤ b)

}

=
T∑
t=1

{
nt∑
i=1

1

T

1

nt
· 1(mi

t ≤ b)

}

�=
T∑
t=1

nt∑
i=1





1
T∑
t=1

nt

· 1(mi
t ≤ b)





= ĜM(b).

Even if T →∞, G̃M(b) �= ĜM(b). Hence G̃M(b) cannot be a consistent estimator if ĜM(b)

is. The consistency of ĜM(b) is shown in proof of Theorem 3.

Since the kernel density estimator is biased at the boundaries, the same trimming

as proposed in Guerre, Perrigne, and Vuong (2000) should be applied. Let Mmin and

Mmax be the minimum and maximum of the all M i
t except when M i

t = 0. Define CS =

[Mmin + ρgMλgM /2, Mmax − ρgMλgM/2]. By applying Equation (3), I define the pseudo
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value V̂ it corresponding to Bit as

V̂ i
t =





0, if Bi
t < Bmin + ρgMλgM/2

Bit + ĜM(Bi
t)/ĝ

M(Bit), if Bi
t ∈ CS

∞, if Bi
t > Bmax − ρgMλgM /2





. (8)

In the second step, I use the pseudo sample {vit} to estimate nonparametrically F (v)

by

F̂ (v) =
1

s

T∑
t=1

n
t∑

i=1
1(vit ≤ v). (9)

Regarding λgM and KgM , I make standard assumptions as follows.

(A1) λgM → 0 and S · (λgM )
2 →∞, as S →∞.

(A2) KgM (·) is the class of all Borel measurable bounded real-valued functions such

that

(i)
∫
KgM (x)dx = 1,

(ii)
∫
|KgM (x)|dx <∞,

(iii) |x||KgM | → 0, as |x| → ∞,

(iv) sup |KgM | <∞,

(v)
∫
|K2

gM
(x)|dx <∞,

(vi) The characteristic function of KgM is absolutely integrable.

The next theorem establishes the uniform consistency of the above two-step nonpara-

metric estimator.

Theorem 3 Suppose (A1) and (A2) hold. Then F̂ (v) given in Equation (9) is uniformly

consistent as S →∞.

Proof. For the uniform consistency, I consider the supreme norm.

(i) ĜM(b) is uniformly consistent to GM(b).

Since the uniform consistency of the empirical distribution is well-known, it is enough

if I show that M i
t ∼ GM(·). Let Cit denote a random variable representing the number of
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bidder i’s competitors in auction t. Then

Pr(Cit = n) =
(n+ 1)pn+1

l−1∑
n=0
(n+ 1)pn+1

=
(n+ 1)pn+1

pe
.

Accordingly,

Pr(M i
t ≤ b) = Pr(Cit = 0) +

l−1∑
n=1

Pr(Cit = n) ·G(n:n)(b)

=
p1
pe

+
l−1∑
n=1

(n+ 1)pn+1
pe

·G(b)n

=
p1
pe
+

l∑
n=2

npn
pe

·G(b)n−1

= q1 +
l∑

n=2
qn ·G(b)

n−1

= GM(b).

(ii) ĝM(b) is uniformly consistent to gM(b) =
l∑

n=2
qng(n−1:n−1)(b).

Define a random variable, M ′: M i
t conditional on that M

i
t �= 0. Noting that Pr(M

i
t =

0) = q1, the density of M
′, gM

′

is

gM
′

(b) =
1

1− q1
·

l∑
n=2

qn · g(b)
n−1(b).

=
1

1− q1
· gM(b).

Accordingly,

gM(b) = (1− q1) · g
M ′

(b)

= (1−Pr(mi
t �= 0)) · g

M ′

(b)

Noting that

ĝM(b) =
(S −

∑
1(mi

t �= 0))

S
·

1

(s−
∑
1(mi

t �= 0)) · λgM

T∑
t=1

nt∑
i=1

KgM (
b−mt

λh2
)1(mi

t �= 0).
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ĝM(b) = (1− P̂r(mi
t �= 0)) · ĝ

M ′(b)

where

P̂r(mi
t �= 0) =

∑
1(mi

t = 0)

s
and

ĝM ′(b) =
1

(s−
∑
1(mi

t �= 0)) · λgM

T∑
t=1

nt∑
i=1

KgM

(
b−mt

λh2

)
·1(mi

t �= 0).

Since P̂r(mi
t �= 0) is a consistent estimator of Pr(mi

t �= 0) and ĝM ′(b) is uniformly

consistent to gM
′

(b), the uniform consistency of ĝM(b) is established.

As S →∞, Mmin → β(v) and Mmax → β(v). Hence given the uniform consistency of

ĜM(b) and ĝM(b), it is straightforward that V̂ i
t converges uniformly to true value, V

i
t .

Let F ′(·) be the true distribution of V̂ it . Using the triangle inequality,

∥∥∥F̂ (v)− F (v)
∥∥∥ ≤

∥∥∥F̂ (v)− F ′(v)
∥∥∥+

∥∥F ′(v)− F (v)
∥∥ .

Since F̂ (v) is an empirical distribution of V̂ it , F̂ (v) converges uniformly to F ′(·).

Since F ′(v) and F (v) are bounded, the uniform consistency of V̂ it to V it implies that

F ′(·) converges uniformly to F (v). Accordingly, the uniform consistency of F̂ (v) is estab-

lished.

4.2 Case 2: Only top two bids are available

Let Y 1t be the highest bid at auction t and Y 2t be the second-highest bid. By Theorem

1, GM(b)/gM(b) = {H2(b) − H1(b)}/{h2(b)}. Accordingly, in the first step, I estimate

GM(·)/gM(·) by {Ĥ2(·)− Ĥ1(·)} / {ĥ2(·)}, where

Ĥ2(b) =
1

T

T∑
t=1
1(y2t ≤ b)

Ĥ1(b) =
1

T

T∑
t=1
1(y1t ≤ b)

ĥ2(b) =
1

T · λh2

T∑
t=1

Kh2

(
b− y2t
λh2

)
· 1(y2t �= 0).
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where λh2 is a bandwidth and Kh2 is a kernel with ρh2-length support. Since the kernel

density estimator is biased at the boundaries, the same trimming as in the previous sub-

session is applied. Let Y 2min and Y 2max be the minimum and maximum of the all Y 2t

except when Y 2t = 0. Define CT = [Y 2min+ρgMλgM/2, Y 2max−ρgMλgM/2]. By applying

Equation (3) I define the pseudo-values
̂

V
(Nt:Nt)
t and

̂
V
(Nt−1:Nt)
t corresponding to Y 1t and

Y 2t as

̂
V
(Nt:Nt)
t =





0, if Y 1t < Y 2min + ρh2λh2/2

Y 1t + {Ĥ2(Y 1t)− Ĥ1(Y 1t)} / ĥ2(Y 1t), if Y 1t ∈ CT

∞, if Y 1t > Y 2max − ρh2λh2/2





and

̂
V
(Nt−1:Nt)
t =





0, if Y 2t < Y 2min + ρh2λh2/2

Y 2t + {Ĥ2(Y 2t)− Ĥ1(Y 2t)} / ĥ2(Y 2t), if Y 2t ∈ CT

∞, if Y 2t > Y 2max − ρh2λh2/2





.

In the second step, I use the pseudo sample {v
(nt:nt)
t , v

(nt−1:nt)
t } to estimate F (v)

by the semi-nonparametric maximum likelihood (SNP) estimation method (Gallant and

Nychka, 1987). From results in Song(2007), the density of v
(nt:nt)
t conditional on v

(nt−1:nt)
t

is f(v
(nt:nt)
t )/(1 − F (v

(nt−1:nt)
t )). Therefore, I obtain the sample likelihood function as

follows.

LT ′(f̂) =
1

T ′

T ′∑

t=1

ln
f̂(v

(nt:nt)
t )

1− F̂ (v
(nt−1:nt)
t )

( F̂ (x) =

∫ x

c
f̂(t)dt )

where c is the minimum of v
(nt−1:nt)
t . A pair in which one of v

(nt:nt)
t and v

(nt−1:nt)
t does

not belong to CT is not used in estimation, and T ′ is the number of pairs after that

exclusion. The SNP estimator is denoted by f̂SNP . Regarding λh2 and Kh2, I make the

same assumptions as made for λgM and KgM in (A1) and (A2) in the previous subsession.

Theorem 4 f̂SNP (v) converges uniformly to f(v) as s→∞.

Proof. For the uniform consistency, I consider the supreme norm.
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(i) From the uniform consistency of the empirical distribution, Ĥ2(b) and Ĥ1(b) con-

verges uniformly to H2(b) and H1(b) respectively.

(ii) ĥ2(b) is uniformly consistent to h2(b) =
l∑

n=2
pnn(n− 1)G(b)

n−2g(b)(1−G(b)).

Define a random variable, Y 2′: Y 2it conditional on that Y 2
i
t �= 0. Noting Pr(y2

i
t = 0) =

p0 + p1, the density of y2′, h2′(y2′) is

h2′(b) =
1

1− p0 − p1
·

l∑
n=2

pnn(n− 1)G(b)
n−2g(b)(1−G(b))

=
1

1− Pr(y2it = 0)
· h2(b).

Accordingly,

h2(b) = (1− Pr(y2it �= 0)) · h2
′(b).

Noting that

ĥ2(b) =
1

T · λh2

T∑
t=1

Kh2

(
b− y2t
λh2

)
· 1(y2t �= 0)

=
(T−

∑
1(y2t �= 0))

T
·

1

(T−
∑
1(y2t �= 0)) · λh2

T∑
t=1

Kh2

(
b− y2t
λh2

)
·1(y2t �= 0),

ĥ2(b) = (1− P̂r(y2t �= 0)) · ĥ2′(b)

where

P̂r(y2t �= 0) =

∑
1(y2t = 0)

T
and

ĥ2′(b) =
1

(T −
∑
1(y2t �= 0)) · λh2

T∑
t=1

Kh2

(
b− y2t
λh2

)
· 1(y2t �= 0)

Since P̂r(y2t �= 0) is a consistent estimator of Pr(y2it �= 0) and ĥ2′(b) is uniformly con-

sistent to h2′(b), the uniform consistency of ĥ2(b) is established. The uniform consistency

of Ĥ2(b), Ĥ1(b), and ĥ2(b) implies the uniform consistency of {Ĥ2(b)− Ĥ1(b)} / ĥ2(b) to

{H2(b) −H1(b)}/{h2(b)} = GM(·)/gM(·). Moreover, Y 2min → β(v) and Y 2max → β(v)

as T →∞. Hence it is straightforward that V̂ it converges uniformly to true value, V
i
t .

Let f ′(·) be the true density of V̂ it . Using the triangle inequality,

∥∥∥f̂SNP (v)− f(v)
∥∥∥ ≤

∥∥∥f̂SNP (v)− f ′(v)
∥∥∥+

∥∥f ′(v)− f(v)
∥∥ .
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As T → ∞,
∥∥∥f̂SNP (v)− f ′(v)

∥∥∥ → 0 (Gallant and Nychka, 1987). Since F ′(v) and

F (v) are bounded and V̂ it converges uniformly to V i
t , ‖f

′(v)− f(v)‖ → 0, as T → ∞.

Accordingly, the uniform consistency of F̂ (v) is established.

5 Monte Carlo Experiments

This session presents the results of Monte Carlo experiments to illustrate performance of

the proposed estimators. For the case in which only top two bids are available, I conducts

only the first step. I conducted both step in the case in which all bids are available.

My Monte Carlo experiment consists of 10,000 replications. For each experiment,

artificial data of 200 auctions are generated. The number of active bidders, Nt (t =

1, ..., 200), was first drawn from a Binomial distribution with trial number 12 and success

probability 0.25. Active bidders’ valuations, V it were then drawn from Gamma(9, .5).

For the sake of reference, E(V i
t ) = 18, and V ar(V it ) = 36. I compute numerically the

corresponding bids Bit using Equation (1).

5.1 Case 1: All bids are available

I choose the kernel and bandwidths according to Guerre, Perrigne, and Vuong (2000):

KgM = (35/32)(1 − u2)31(|u| ≤ 1) and hgM = 1.06σ̂(S)1/5 where σ̂ is the estimated

standard deviations of observed M ′. I first report the results only from Step 1 to examine

the performance of ĜM(b)/ĝM(b). In Figure 1, I display the 10 % percentile, median,

and 90th-percentile of b + ĜM(b)/ĝM(b) among 10,000 repetitions (three dotted lines)

, along with b + GM(b)/gM(b) (solid line). For reference, the means of boundaries of

CS = [Mmin + ρgMλgM /2, Mmax − ρgMλgM /2] which appears in Equation (9) is 1.57 and

19.99. Figure 1 shows that the first step estimator performs very well. Within the average

boundaries, the true curve falls within the 90% confidence band and the median of the

estimates perfectly matches the true curve. Table 1 gives descriptive statistics of the

mean and standard deviation of (after trimming) pseudo-values and true values at each
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experiments.

Figure 1

Table 1 Estimation of Valuations

pseudo values true values

mean std mean std

10% percentile 17.33 4.378 17.65 4.509

median 17.88 4.939 17.93 4.738

90% percentile 18.52 5.523 18.23 4.900

mean 17.95 5.409 17.93 4.736

Figure 2 displays the 10 % percentile, median, and 90th-percentile of F̂ (v) among

10,000 repetitions, along with the true bidders’ value distribution solid line). The perfor-

mance of F̂ (v) is very strong. The average boundary values outside of which are trimmed

are 8.34 and 39.32.
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Figure 2

 

5.2 Case 2: Only top two bids are available

In these experiments, I estimate GM(b)/gM(b) using only top two bids. I choose the

kernel and bandwidths in the same way: Kh2(u) = (35/32)(1− u2)31(|u| ≤ 1) and λh2 =

1.06σ̂(S)1/5.

Table 3 and 4 give descriptive statistics of the mean and standard deviation of (after

trimming) pseudo-values and true values at each experiments.

Table 3: Estimation of the Highest Value

pseudo values true values

mean std mean std

10% percentile 21.02 3.14 21.92 4.61

median 22.01 3.91 22.54 5.08

90% percentile 23.20 5.03 23.14 5.57

mean 22.14 4.66 22.53 5.09
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Table 4: Estimation of the Second-Highest Value

pseudo values true values

mean std mean std

10% percentile 16.12 2.92 16.10 3.27

median 16.83 3.62 16.63 3.54

90% percentile 17.57 4.27 17.16 3.79

mean 16.83 3.61 16.63 3.53

6 Tentative Applications: BC Timber Auctions

The British Columbia timber sales (BCTS)7 develops and sells blocks of publicly-owned

timber across the province. One of their major goals is to provide a credible reference point

for costs and pricing of timber harvested from public land in BC. To achieve that goal,

BCTS uses the market pricing system which is based on the results of auction by BCTS:

They auction part of the provincial allowable annual cut through hundreds of timber sales

and then use the auction results with auction characteristics to determine the price of the

remaining timber. Currently, they use simple regressions.

My future work is to see if structural analysis can do better than the current market

pricing system. The estimation methods proposed in this paper will be useful specifically

because the estimation methods do not require knowledge regarding the number of po-

tential bidders. Most structural estimation methods have proposed an estimator of the

potential bidders’ value distribution, given knowledge regarding the number of potential

bidders. As information of the number of potential bidder is hard to obtain except in auc-

tions already held, it is difficult to apply the methods requiring knowledge regarding the

number of potential bidders to this application because we need to predict the "auction

price" of the timber which has not been sold through the auction. In addition, BCTS

uses first-price sealed-bid auctions and protects information of how many bidders have

7See http://www.for.gov.bc.ca/bcts/.
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submitted a bid until bid opening. Hence the model with an uncertain number of bidders

is relevant.

7 Concluding Remarks

This paper develops econometric methods for structural analysis of first-price auction data

in which bidders do not know how much competition they face with allowing the stochastic

number of bidders. In particular, I newly show that only top two bids identify the bidders’

value distribution and the distribution of the number of potential bidders. I propose an

estimation strategy for the bidders’ value distribution in both cases: (i) case in which all

bids are available; and (ii) case in which only top two bids are available. It is future work

to propose an estimation strategy for the distribution of the number of potential bidders

and apply the proposed methods to BC timber auctions.
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