Idiosyncratic Risk, Expected Windfall, and the Cross-Section of Stock Returns

Chi Wan

Boston College

Prepared for the School of Economics at Shanghai University of Finance and Economics

March 2, 2009

• • • • • • • • • • • •

• A. Literature Review:

Idiosyncratic Risk and the Idiosyncratic Volatility Puzzle

- B. Data
- C. A Novel Methodology for Robust Estimation of Idiosyncratic Volatility
- D. Cross-Sectional Portfolio Analysis
- E. Cross-Sectional Regression Tests
- F. Concluding Remarks

<ロト < 回 > < 回 > < 回 > < 回 >

- Develop A Novel Methodology for Robust Estimation of Conditional Idiosyncratic Volatility
- Identify Two Risk Factors on Cross-sectional Stock Returns:
 - (1) Idiosyncratic Variance,
 - (2) Firm-Level Return Skewness (measured by Expected Windfall).

Solve the Major Piece of the Idiosyncratic Volatility Puzzle!

A. Literature Review

- Systematic Risk (Market Risk) and Idiosyncratic Risk (Firm-Specific Risk)
- Capital Asset Pricing Model (CAMP)
- Idiosyncratic Risk Matters!
 - Coetzmann and Kumar (2004)
 - Falkenstein (1996); Day, Wang, and Xu (2000)
 - Campbell, Lettau, Malkiel and Xu (2001)
- Theoretical Perspective A **Positive** Idiosyncratic Volatility Effect at the Individual Stock Level
 - Levy(1978), Merton(1987), Malkiel and Xu(2001)
 - Barberis and Huang (2001)
- Empirical Evidence Still Mixed!
 - A **Negative** Idiosyncratic Volatility Effect: Idiosyncratic Volatility Puzzle *High (Realized) Idiosyncratic Volatility vs. Low Returns* (Ang, Hodrick, Xing and Zhang (2006 JoF, JFE forthcoming))
 - A Positive Idiosyncratic Volatility Effect (Fu (JFE forthcoming); Spiegel and Wang (2007); Eiling (2006); Brockman and Schutte (2007))

• Market Model: Fama-French (1993) Three-Factor Model:

$$r_{i,t} - r_t^f = \alpha_i + \beta_{i,MKT} MKT_t + \beta_{i,SMB} SMB_t + \beta_{i,HML} HML_t + \underbrace{u_{i,t}}_{\text{Idiosyncratic}}$$
Idiosyncratic Shock

- Idiosyncratic shocks are measured as OLS residuals $u_{i,t}$, which cannot be priced by market factors.
- Idiosyncratic Volatility $\sigma_{i,t} \equiv Std.Dev(u_{i,t})$

イロト イヨト イヨト イヨト

A.2 Idiosyncratic Volatility Puzzle (Literature Review con'd)

 OLS Estimation of the Realized Idiosyncratic Volatility with Daily Returns: For the *i* - *th* stock within the month *t*:

 $r_{i,s} - r_s^f = \alpha_i + \beta_{i,MKT} MKT_s + \beta_{i,SMB} SMB_s + \beta_{i,HML} HML_s + u_{i,s}$ where $s = 1, ..., N_{i,t}$

Monthly Idiosyncratic Volatility $\widehat{\sigma_{i,t}} = \sqrt{N_{i,t}} \times sd(\widehat{u_{i,s}})$

• Idiosyncratic Volatility Puzzle (Table VI, Andrew Ang et. al (2006)): High (Realized) Idiosyncratic Volatility vs. Low Future Return

Rank	Return	Std.Dev.	Mkt Share
1 (low)	1.04	3.83	53.5
2	1.16	4.74	27.4
3	1.20	5.85	11.9
4	0.87	7.13	5.2
5 (high)	-0.02	8.16	1.9
5 - 1	- 1.06 [-3.01]		
			・ロン ・日ン ・日

Mar. 2 6 / 23

A.3 Positive Idiosyncratic Volatility Effect (Literature Review con'd)

• EGARCH Estimates of Conditional Idiosyncratic Volatility

$$\begin{aligned} r_{i,t} - r_t^f &= \alpha_i + \beta_{i,MKT} MKT_t + \beta_{i,SMB} SMB_t + \beta_{i,HML} HML_t + u_{i,t} \\ u_{i,t} &= \sigma_{i,t} \varepsilon_{i,t}, \ \varepsilon_{i,t} \stackrel{iid}{\sim} N(0,1) \\ \ln \sigma_{i,t}^2 &= a_i + b_i \ln \sigma_{i,t-1}^2 + c_i \left\{ \theta \varepsilon_{i,t-1} + \gamma \left[|\varepsilon_{i,t-1}| - \sqrt{2/\pi} \right] \right\} \end{aligned}$$

 A Positive Relationship Between Conditional Idiosyncratic Volatility and Expected/Average Stock Returns (Fu (2008); Spiegel and Wang (2007); Eiling (2006); Brockman and Schutte (2007))

A.3 Positive Idiosyncratic Volatility Effect (Literature Review con'd)

• Portfolios Sorted by EGARCH Estimates of Conditional Idiosyncratic Volatility (Table 6, Spiegel and Wang (2007))

Rank	return	Std.Dev.	Mkt Share
1(low)	0.03	3.72	27.48
2	0.96	7.19	24.36
3	1.19	4.7	16.04
4	1.17	7.57	10.98
5	0.98	6.94	7.34
6	1.00	5.11	5.08
7	0.98	4.25	3.52
8	1.09	5.68	2.42
9	0.96	6.59	1.71
10 (high)	1.36	8.15	1.08
10 - 1	1.33 [3.21]		

- Time Span: July 1964 ~December 2006 (510 months)
- CRSP: Monthly stock returns, stock prices and outstanding share numbers for stocks traded on NYSE, AMEX and NASDAQ
- COMPUSTAT: Book-values of asset/equity
- Kenneth French's Online Database: Risk-free interest rate, Fama-French three factors
- 1,926,356 return observations for 12,051 stocks over the span of 510 months

- Time-Persistence of Idiosyncratic Volatility
- Firm-level Gaussian-Innovation Assumption in the EGARCH Model (Fu (2008); Spiegel and Wang (2007); Eiling (2006); Brockman and Schutte (2007))

$$\forall i, \{\varepsilon_{i,t}\}_t \stackrel{iid}{\sim} N(0,1)$$

Significance Level	1%	5%
H_0 : Skewness = 0	74%	81%
H_0 : ExcessKurtosis = 0	80%	88%
H ₀ : Normality	83%	90%

• At the 5% significance level, the Gaussian-innovation assumption is rejected by over 90% stocks traded on NYSE, NASDAQ and AMEX!

C.2 Robust Estimation of Conditional Volatility: A Quantile-Regression Based Approach

• Linear TGARCH(1,1)

ł

$$\begin{aligned} r_{i,t} - r_t^f &= \alpha_i + \beta_{i,MKT} MKT_t + \beta_{i,SMB} SMB_t + \beta_{i,HML} HML_t + u_{i,t} \\ u_{i,t} &= \sigma_{i,t} \varepsilon_{i,t}, \underbrace{\varepsilon_{i,t} \overset{iid}{\sim} F_i(0,1)}_{\sigma_{i,t-1} + \gamma_{i,1}} |u_{i,t-1}| + \gamma_{i,2} |u_{i,t-1}| \times I(u_{i,t-1} < 0) \end{aligned}$$

- $F_i(\cdot)$: the firm-specific innovation distribution
- Robust Estimation of Conditional Volatility and Quantiles: An Iterative Quantile-Regression Based Algorithm

$$Q_i(\tau) = F_i^{-1}(\tau)$$

$$\begin{aligned} &(\theta_i, \gamma_i) = \operatorname*{arg\,min}_{\substack{\theta_i, \gamma_i \\ \theta_i, \gamma_i \\ }} \sum_t \rho_\tau \left[u_{i,t} - \sigma_{i,t}(\theta_i, \gamma_i) Q_i(\tau) \right] \\ &Q_i(\tau) = \operatorname*{arg\,min}_{\xi} \sum_t \rho_\tau \left[\frac{u_{i,t}}{\sigma_{i,t}(\theta_i, \gamma_i)} - \xi \right] \end{aligned} \} \Rightarrow \left\{ \begin{aligned} \widehat{\sigma_{i,t}} \\ &\widehat{Q_i}(\tau) \end{aligned} \right.$$

Quantile Regression: A Very Brief Introduction

$$y = X\beta + \varepsilon$$

Conditional Mean: Ordinary Least Squares (OLS)

$$\widehat{eta_{OLS}} = \mathop{\arg\min}_{eta} \sum_{i} \left(y_i - x_i' eta
ight)^2$$
, $E[y|X] = X \widehat{eta_{OLS}}$

• Conditional Median: Least Absolute Deviations (LAD)

$$\widehat{eta_{LAD}} = \operatorname*{arg\,min}_{eta} \sum_{i} \left| y_i - x_i' eta \right|, \qquad Q_y(0.5|X) = X \widehat{eta_{LAD}}$$

Quantile Regression

$$\begin{split} \widehat{\beta_{\tau}} &= \arg\min_{\beta} \sum_{i} \rho_{\tau}(y_{i} - x_{i}'\beta) \\ &= \arg\min_{\beta} \sum_{i|y_{i} - x_{i}'\beta > 0} \tau \cdot |y_{i} - x_{i}'\beta| + \sum_{i|y_{i} - x_{i}'\beta \leq 0} (1 - \tau) \cdot |y_{i} - x_{i}'\beta| \\ Q_{y}(\tau|X) &= X\widehat{\beta_{\tau}} \\ \text{Check Function: } \rho_{\tau}(v) \equiv v[\tau - I(v < 0)]. \end{split}$$

C.3 Robustness Comparison

$$MSE = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{T} \sum_{t=1}^{T} \left(\widehat{\sigma_{i,t}} - \sigma_{i,t} \right)^2$$

1. MLE of Conditional idiosyncratic Volatility with the Gaussian-Innovation Assumption)

				,				
	Normal	t(df = 5)	t(df = 3)	skewed $t(df = 3, s = 5)$				
T = 60	$9.86 imes10^{-4}$	$8.42 imes 10^{-3}$	$6.69 imes10^{-3}$	$3.72 imes 10^{-3}$				
	$2.61 imes10^{-4}$		$5.26 imes10^{-3}$					
<i>T</i> = 500	$1.45 imes10^{-4}$	$4.98 imes10^{-3}$	$5.83 imes10^{-3}$	0.235				
2. Quantile	2. Quantile-Regression Based Estimates of Conditional idiosyncratic Volatility							
T = 60	$1.15 imes10^{-3}$	$1.33 imes10^{-3}$	$2.27 imes10^{-3}$	$1.34 imes10^{-3}$				
T = 300			$9.82 imes 10^{-4}$					
T = 500	$2.85 imes 10^{-4}$	$4.84 imes 10^{-4}$	$7.12 imes 10^{-4}$	$4.28 imes 10^{-4}$				

• The misspecified Gaussian-innovation assumption causes severe estimation errors in the MLEs of idiosyncratic volatilities!

• The proposed quantile-regression based method is able to robustly estimate conditional idiosyncratic volatilities for different return processes.

→ 3 → 4 3

D.1 Reexamine the Idiosyncratic Volatility Puzzle: A Cross-Sectional Portfolio Analysis

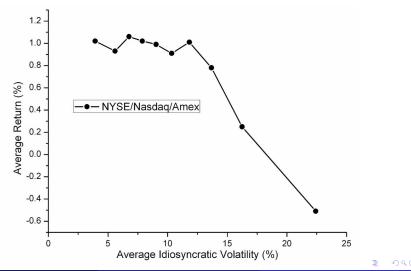
Rank	E(IVol)	Return	Std.Dev.	Mkt S	Price
1 (low)	3.92	1.02	3.69	31.04	42.71
2	5.59	0.93	4.16	25.27	67.51
3	6.76	1.06	4.59	15.44	33.44
4	7.88	1.02	5.22	9.87	27.10
5	9.03	0.99	5.82	6.89	23.36
6	10.34	0.91	6.57	4.69	19.83
7	11.82	1.01	7.24	3.03	16.59
8	13.67	0.78	8.31	1.92	13.36
9	16.24	0.25	8.54	1.22	10.40
10 (high)	22.41	-0.51	9.49	0.63	6.86
10 - 1		−1.53 [−4.19]			

• The Puzzle becomes even more puzzling: a contemporaneous **negative** idiosyncratic volatility effect that is just the opposite of the findings of Fu (2008) and Spiegel and Wang (2007).

D.2 Observation 1

• Idiosyncratic Volatility Effect — More Than A Linear Effect

Average Return (col. Ret) vs. Average Idiosyncratic Volatility (col. E(IVol))

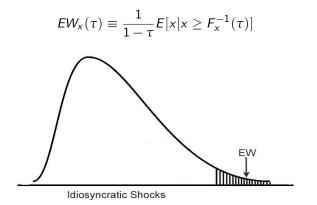


Chi Wan (Boston College)

- The most volatile stocks are **small-cap** and **low-price** stocks! Chen, Hong and Stein (2001), Deffee (2002), Zhang (2005) — Small stocks tend to have more positively skewed return distributions than large stocks
- Firm-level expected skewness can be priced.
 "Stocks as Lotteries", Barberis and Huang, 2008, AER.
- The measure of firm-level expected skewness
 - Past skewness
 - Intra-industry skewness (Zhang, WP Yale)

D.3 Observation 2 (Con'd)

• Expected Windfall — An alternate measure for firm-level expected skewness



• Computional Advantage: Bassett, Koenker and Kordas (2004)

$$\widehat{EW_{i,t}}(\tau) = \frac{1}{1-\tau} \frac{1}{t} \min_{\zeta} \sum_{s=1}^{t} \rho_{\tau}(u_{i,s} - \zeta) - \frac{\tau}{1-\tau} \frac{1}{t} \sum_{s=1}^{t} u_{i,s}$$

Chi Wan (Boston College)

Mar. 2 17 / 23

• Fama-MacBeth (1973) Cross-Sectional Regression Test

$$\begin{aligned} R_{i,t} &= \gamma_{0,t} + \sum_{k=1}^{K} \gamma_{k,t} X_{i,k,t} + \nu_{i,t} \\ \widehat{\gamma_k} &= \frac{1}{T} \sum_{t=1}^{T} \widehat{\gamma_{k,t}} \\ \text{var}\left(\widehat{\gamma_k}\right) &= \frac{\sum_{t=1}^{T} \left(\widehat{\gamma_{k,t}} - \widehat{\gamma_k}\right)^2}{T(T-1)} \\ t_{FM} &= \frac{\widehat{\gamma_k}}{\sqrt{\text{var}\left(\widehat{\gamma_k}\right)}} \end{aligned}$$

• $\widehat{\gamma_k}$ indicates the predictive power of the k - th regressor on the expected returns.

イロト イヨト イヨト イヨト

E.1 Fama-MacBeth Cross-Sectional Regression Tests (con'd)

• Idiosyncratic Volatility Effect — More Than A Linear Effect

$$\widehat{R_{i,t}} = \widehat{\gamma_{0,t}} + \widehat{\gamma_{1,t}}\sigma_{i,t} + \widehat{\gamma_{2,t}}\sigma_{i,t}^2 + \dots$$

	const	σ	σ^2	BETA	In (<i>size</i>)	B/M	<i>ret</i> _2:-7	F
(1)	-0.007 [-0.35]	0.02 [0.845]		0.17 [14.43]	0.012 [18.0]	0.002 [1.26]	0.73 [43.99]	_
(2)	0.043 [2.33]	0 . 334 [7.63]	- 1.798 [-10.02]	0.17 [14.29]	0.013 [19.09]	0.002 [1.65]	0.712 [44.01]	50.3

•
$$\frac{\partial \widehat{R_i}}{\partial \sigma_i} = \widehat{\gamma_1} - 2\widehat{\gamma_2}\sigma_i > 0 \Rightarrow \sigma_i < \frac{\widehat{\gamma_1}}{2 \times \widehat{\gamma_2}} = 9.28\%$$

A positive idiosyncratic volatility effect for stocks comprising about 85% of the total market cap!

イロン イヨン イヨン イヨン

E.1 Fama-MacBeth Cross-Sectional Regression Tests (con'd)

• Firm-level Return Skewness — Expected Windfall

	const	σ	σ^2	$EW_{95\%}$	BETA	In (<i>size</i>)	B/M	<i>ret</i> _2:-
(1)	-0.007 $[-0.35]$	0.02 [0.845]			0.172 [14.43]	0.012 [18.0]	0.002 [1.26]	0.73 [43.99]
(2)	0.043 [2.33]	0.33 [7.63]	-1.8 [-10.02]		0.168 [14.29]	0.0128 [19.09]	0.002 [1.65]	0.712 [44.01]
(3)	0.066 [3.50]	0.69 [9.60]	- 1.81 [-10.0]	- 0 . 123 [-9.58]	0.166 [14.27]	0.013 [19.86]	0.0024 [2.0]	0.707 [44.70]

•
$$\frac{\partial \widehat{R}_i}{\partial \sigma_i} = \widehat{\gamma_1} - 2\widehat{\gamma_2}\sigma_i > 0 \Rightarrow \sigma_i < \frac{\widehat{\gamma_1}}{2 \times \widehat{\gamma_2}} = 19\%$$

Solve the major piece of the idiosyncratic volatility puzzle: a positive idiosyncratic volatility effect for stocks comprising about 99% of the total market cap!

•
$$\sigma_{i,t} \ge 19\%$$
 : $\overline{price} = \$7.53$, $\overline{MCap} = \$93m$

(日) (同) (三) (三)

• Quantile Regression Analysis of the predictability of Cross-sectional Returns

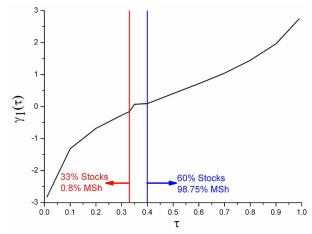
$$\begin{aligned} R_{i,t}(\tau) &= \gamma_{0,t}(\tau) + \gamma_{1,t}(\tau)\sigma_{i,t} + \sum_{k=2}^{K}\gamma_{k,t}(\tau)X_{i,k,t} + \nu_{i,t}(\tau)\\ \widehat{\gamma_{k}}(\tau) &= \frac{1}{T}\sum_{t=1}^{T}\widehat{\gamma_{k,t}}(\tau)\\ \text{var}\left[\widehat{\gamma_{k}}(\tau)\right] &= \frac{\sum_{t=1}^{T}\left(\widehat{\gamma_{k,t}}(\tau) - \widehat{\gamma_{k}}(\tau)\right)^{2}}{T(T-1)} \end{aligned}$$

• $\widehat{\gamma_k}(\tau)$ indicates the predictive power of the k - th regressor on returns at the $\tau - th$ quantile of the cross-sectional stock return distribution.

イロン イヨン イヨン イヨン

E.2 Cross-Sectional Quantile-Regression Test (con'd)

• Quantile-dependent Idiosyncratic Volatility Effect



• A positive and *statistically significant* idiosyncratic volatility effect for stocks comprising **98.8**% of the total market cap of the NYSE, NASDAQ and AMEX exchanges!

Chi Wan (Boston College)

F. Contribution & Concluding Remarks

- Robustly Estimate Conditional Idiosyncratic Volatility
- Cross-Sectional Portfolio Analysis
 - The idiosyncratic volatility puzzle exists intertemporally!
 - Two Observations
 - Non-linear Idiosyncratic Volatility Effect Idiosyncratic Variance
 - Firm-level Return Skewness Expected Windfall
- Cross-Sectional Regression Tests
 - Solve the major piece of the idiosyncratic volatility puzzle: A positive idiosyncratic volatility effect for about 99% of the total market capitalization
- Next
 - Distress Risk (Default Risk)
 - China Stock Market

(日) (同) (日) (日)